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Abstract
Background  Health economic modelling indicates that referral to a behavioural weight management programme 
is cost saving and generates QALY gains compared with a brief intervention. The aim of this study was to conduct a 
cross-model validation comparing outcomes from this cost-effectiveness analysis to those of a comparator model, to 
understand how differences in model structure contribute to outcomes.

Methods  The outcomes produced by two models, the School for Public Health Research diabetes prevention (SPHR) 
and Health Checks (HC) models, were compared for three weight-management programme strategies; Weight 
Watchers (WW) for 12 weeks, WW for 52 weeks, and a brief intervention, and a simulated no intervention scenario. 
Model inputs were standardised, and iterative adjustments were made to each model to identify drivers of differences 
in key outcomes.

Results  The total QALYs estimated by the HC model were higher in all treatment groups than those estimated by 
the SPHR model, and there was a large difference in incremental QALYs between the models. SPHR simulated greater 
QALY gains for 12-week WW and 52-week WW relative to the Brief Intervention. Comparisons across socioeconomic 
groups found a stronger socioeconomic gradient in the SPHR model. Removing the impact of treatment on HbA1c 
from the SPHR model, running both models only with the conditions that the models have in common and, to a 
lesser extent, changing the data used to estimate risk factor trajectories, resulted in more consistent model outcomes.

Conclusions  The key driver of difference between the models was the inclusion of extra evidence-based detail in 
SPHR on the impacts of treatments on HbA1c. The conclusions were less sensitive to the dataset used to inform the 
risk factor trajectories. These findings strengthen the original cost-effectiveness analyses of the weight management 
interventions and provide an increased understanding of what is structurally important in the models.
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Background
Behavioural weight management programmes have been 
shown to result in weight loss and reductions in glycae-
mia [1–3]. The WRAP trial showed that referral to a 
commercial open-group behavioural programme (WW, 
formerly Weight Watchers) for 12 weeks or 52 weeks 
resulted in greater weight loss during a 2-year follow-up 
than a brief intervention (a booklet of self-help weight-
management strategies) [1]. At the five-year follow-up 
of the trial, there was no significant difference in weight 
between the groups, but there was some weight loss 
maintenance [4]. Health economic modelling over the 
lifetime estimated that the 12-week and 52-week pro-
grams were cost saving and generated QALY gains com-
pared with the brief intervention. Relative to natural 
history, the 52-week programme generated greater ben-
efits than the 12-week programme. To improve model 
credibility and align with the International Society for 
Pharmacoeconomics and Outcomes Research–Society 
for Medical Decision Making (ISPOR-SMDM) interna-
tional best practice recommendations, cross-model vali-
dation is needed [5].

Cross-model validation, also known as cross valida-
tion, comparative modelling or convergent validation, is 
the process of simulating the same decision problem with 
two or more models and comparing the predictions and 
outcomes [6] and is recommended by modelling good 
research practices and guidelines [5, 7, 8] Existing guid-
ance is summarised in Supplementary Material, Table S1. 
Although it cannot be used as evidence that the model 
predicts outcomes accurately, it can give more confi-
dence in the outcomes and credibility to the model if 
different models result in similar outcomes or the same 
decision. To maximise the value of the cross-model vali-
dation, models should be developed independently, and 
modellers should collaborate in the comparison process 
[5]. Cross-model validation is particularly important 
for validating the long-term impact of an intervention. 
External validation (comparisons to historical event data) 
is a useful form of validation for health trajectories esti-
mated in the absence of an intervention (i.e., standard 
care). However, novel intervention outcomes cannot be 
compared with historical data. Furthermore, it can be 
challenging to find, and access, representative datasets to 
validate model outcomes against, particularly for utilities 
(a measure of the preference or value assigned to a par-
ticular health state), quality-adjusted life years (QALYs) 
and aggregated costs. Cross-model validation of the long-
term impact of the treatment is likely to be particularly 
important for public health interventions in which the 
long-term (and even short-term) impacts of an interven-
tion on health are unknown [9].

Although cross-model validation is recommended, 
there is no clear guidance on how to carry out the 

validation and there is variation in how it is conducted 
[10]. Few studies provide a detailed explanation of the 
validation framework used, and there was variation in 
reporting [6]. Examples of cross-model validation most 
commonly include a comparison of model outcomes 
against previously published results [11]. In many pub-
lished cross-model validations, individual teams run sce-
narios on their models, and the results are compared [8, 
12–16]. Although this enables many models to be com-
pared at once with multiple scenarios, it can be more 
difficult to establish how model structure impacts these 
differences. Each team has a less detailed understand-
ing of other models, and the process requires extensive 
time commitment from all participants, which can act as 
a barrier to engagement. In one example, the authors had 
access to both models that had been developed indepen-
dently [6]. Expansion in open-source modelling provides 
opportunities to develop cross-model validation pro-
cesses to benefit decision-makers and modellers.

Comparisons of public health models that estimate 
the impact of behavioural interventions are challenging. 
When comparing public health models, a single interven-
tion may impact several risk factors and the risk of many 
different health outcomes, which may result in large dif-
ferences between model structures and assumptions 
even when examining a single health behaviour (e.g., eat-
ing healthily) [9]. Furthermore, microsimulation models 
are often used for evaluating behavioural interventions 
because they allow flexibility in structure and therefore 
can be used to represent the various pathways from inter-
vention to risk factors to outcomes. This may contribute 
to greater variation between model structures. Obser-
vations from a cross-model validation of public health 
interventions suggest that there are large variations in 
costs per QALY between models [10]. Differences in 
model structure are likely to make differences in model 
outcomes difficult to interpret and risk reducing trust in 
findings for decision-makers. This highlights the need 
for publicly available detailed cross-model validations of 
public health models; it enables greater understanding of 
the impact of model structure on outcomes for the deci-
sion problem of interest but also because it can inform 
the development of existing and new models.

The aim of this study was to conduct a cross-model 
validation to compare estimations of long-term effective-
ness generated by the SPHR model, as part of an existing 
cost-effectiveness analysis, with those of a comparator 
model that also quantified long-term effectiveness of 
weight management, to help understand how differences 
in model structure contribute to outcomes.
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Method
Decision problem
The extended and standard duration weight-loss pro-
gramme referrals for adults in primary care (WRAP) 
trial was a randomised controlled trial in which partici-
pants were assigned to a brief intervention (brief advice 
and self-help materials) or a 12- or 52-week weight-
management programme (WW) [4]. The 5-year fol-
low-up was registered with Current Controlled Trials 
(ISRCTN64986150) on 01/02/2018. Participants’ weight 
was measured at baseline and at 3, 12, 24 and 60 months, 
and cholesterol HbA1c and blood pressure were mea-
sured at baseline and at 12 and 60 months. The decision 
problem was to determine whether the 12- and 52-week 
interventions were effective over the lifetime at reducing 
the incidence of disease and increasing QALYs for adults 
with a BMI ≥ 28 compared to a brief intervention and 
simulated no intervention scenario.

Model comparison

Models compared
The Health Checks model was chosen for comparison 
with the SPHR model. The model code was freely avail-
able allowing for an in depth understanding of the mod-
els, and the authors of the original model code agreed to 
support the model comparison throughout the process.

School for Public Health diabetes prevention model
The School for Public Health Research (SPHR) diabetes 
prevention model is a microsimulation health economic 
model that describes individuals’ risk of type 2 diabetes, 
microvascular outcomes, cardiovascular disease (CVD), 
congestive heart failure, cancer, osteoarthritis, depres-
sion, dementia, and mortality in England. The model 
includes correlated trajectories of risk factors, including 
body mass index (BMI), systolic blood pressure, choles-
terol and blood glucose, and annual changes in these risk 
factors impact the risk of health conditions in the model. 
Benefits are measured in QALYs, and the model uses a 
National Health Service (NHS)/personal social services 
perspective. The model was developed in the R soft-
ware to examine the cost-effectiveness of type 2 diabe-
tes prevention programmes; detailed information about 
the model can be found in a prior studies [17, 18] and in 
Table S1.

Health Checks model
The HC microsimulation model was developed to exam-
ine the impact of the NHS Health Checks cardiovascu-
lar disease prevention programme in England on the 
risk of ischaemic heart disease, stroke, dementia, and 
lung cancer. The health checks intervention involved eli-
gible simulated patients being invited for a health check, 

potentially followed by referral for one or more statin 
medications, antihypertensive medication, smoking ces-
sation, and/or weight management depending on health 
status. This referral had the potential to impact the tra-
jectories of risk factors in the model, including BMI, 
blood pressure, smoking status, and cholesterol. Ben-
efits are measured in QALYs. No costs were included. 
Detailed information about the model, which was pro-
grammed in Python, can be found in a prior study [19] 
and in Table S1.

The models were compared qualitatively to identify 
structural differences (Table S1 of the supplementary 
material). Existing publications, technical descriptions 
and the model code were reviewed to document the 
model structures. Developers of both models contributed 
to the protocol and identified methodological challenges 
to the validation process.

Standardising model setup
Models were standardised to ensure that model setup 
were the same across models. Supplementary material 
A and Table S3 provides a summary of the standardisa-
tion steps. In contrast to previous cross-model valida-
tions [6], we found that using a common set of parameter 
inputs was not feasible, as both models used multivariate 
risk equations that are conditional on multiple charac-
teristics, and different methodologies for applying utility 
decrements.

The HC model was adapted in the following ways to 
reflect the model setup and baseline population charac-
teristics used in the SPHR model.

a.	 Baseline population was HSE 2014 (instead of 2012).
b.	 Discount rate of 3.5% applied (instead of no 

discount).
c.	 Baseline utility from HSE 2014 (instead of 1).

All standardisation steps were made to the HC model. 
Each standardisation step was conducted independently, 
and then all steps were applied simultaneously.

Outcomes compared
To understand the differences between the models we 
conducted an in-depth assessment of consistency across 
multiple model outcomes, including uncertainty analy-
ses and sub-group analyses. We examine include out-
comes that will impact decision-makers (QALYs), we also 
examined aggregate outcomes, incremental values, inter-
mediate outcomes which include diagnosis of health con-
ditions and outcomes for relevant subgroups. Previous 
cross-model validation examples [6] have suggested that 
an acceptable magnitude of difference between model 
outcomes should be identified in advance of the model 
comparison. However, in the absence of cost estimates it 
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was not possible to calculate the acceptable magnitude of 
differences based on decision impacts.

Identifying aspects of model structure that explain 
differences in outcomes
We identified some adaptations that could be made to 
each model to make the model structures more similar. 
Because of the complexity of both models, it was imprac-
tical to change every aspect of one model incrementally 
to become like the other model and so we focussed on 
(a) the aspects of the model could be feasibly modified 
and (b) what we expected to make a difference to the 
outcomes of interest. Running iterations of the models 
in which, the model structures are made more similar 
can increase our understanding of how differences in 
model structure contribute to the differences in model 
outcomes. The options for model adaptations were pre-
specified in the protocol. Of the pre-specified model 
adaptations specified in the protocol (Table S5 of the 
supplementary material) three model adaptations were 
selected in which the SPHR and/or the HC model were 
altered such that the models were more similar, and 4 
scenarios were explored:

A.	Remove impact of treatment on HbA1c from SPHR. 
The HC model was not designed to model the impact 
of changing HbA1c and so, the HBA1c trajectory 
did not impact on risk of diabetes or cardiovascular 
disease as is the case in the SPHR model. Therefore, 
the SPHR model was run without modelling the 
impact of the treatment on HbA1c trajectories to 
replicate the HC model structure.

B.	 Same health conditions. In addition to changes 
A, the models were adapted so that they had the 
same health conditions. Both models were run 
with only the conditions that the models had in 
common (diabetes, dementia, and CVD) removing 
microvascular complications, osteoarthritis and 
cancer from the SPHR model and lung cancer from 
the HC model. Other-cause mortality was not 
adjusted. Although this will result in slightly inflated 
life year estimates, adjusting mortality would have 
required a large model adjustment and the expected 
impact on mortality would be very small. Given the 
adjustment required and the small expected effect, 
we decided to compare model results without a full 
mortality adjustment.

C.	Use ELSA trajectories in the SPHR model. The SPHR 
model was run with the trajectories of risk factors 
based on an analysis of the ELSA dataset. This differs 
from the base case in which trajectories from age 18 
to 59 were based on analysis of the Whitehall II data 
set with trajectories for age 60 and over were based 

on ELSA. The modelling methods for using the ELSA 
data remained different.

D.	All structural changes applied. Sensitivity analyses 
A, B and C were applied together to explore the 
impact of all adjustments combined.

Table 1  Absolute and incremental QALYs generate by the SPHR 
and health checks model including standardisation steps

Simulated 
Natural 
History

Brief 
intervention

12-week 
intervention

52-
week 
inter-
vention

Absolute QALYs estimated by the SPHR Model (no standardisation steps 
applied)
Original 
model 
inputs

11.4 [10.5, 
12.2]

11.4 [10.5, 12.1] 11.4 [10.5, 
12.2]

11.4 
[10.6, 
12.2]

Absolute QALYs estimated by the HC Model
Original 
model 
inputs

28.4 [27.7, 
29.2]

28.4 [27.7, 29.2] 28.4 [27.7, 
29.2]

28.38 
[27.7, 
29.2]

a. 28.3 [27.7, 
29.0]

28.3 [27.8, 29.0] 28.3 [27.78, 
29.0]

28.33 
[27.8, 
29.0]

b. 17.0 [16.7, 
17.2]

17.0 [16.7, 17.2] 17.0 [16.7, 
17.2]

17.01 
[16.7, 
17.2]

c. 21.6 [21.1, 
22.0]

21.62 [21.2, 
22.0]

21.62 [21.2, 
22.0]

21.62 
[21.2, 
22.00]

a, b, and c 
applied

13.11 [12.8, 
13.5]

13.12 [12.8, 
13.5]

13.12 [12.8, 
13.5]

13.12 
[12.8, 
13.5]

Incremental QALYs estimated by the SPHR Model (no standardisation steps 
applied)

0.0019 [-0.0499, 0.0416] 0.0248 
[-0.0024, 
0.0599]

0.0298 
[-0.002, 
0.0688]

Incremental QALYs (vs. Natural history) estimated by the HC Model
Original 
model 
inputs

0.0305 [0.0153, 0.0438] 0.0293 [0.0171, 
0.0439]

0.0308 
[0.0171, 
0.0434]

a. 0.0311 [0.0150, 0.0438] 0.0299 [0.0173, 
0.0409]

0.0314 
[0.0165, 
0.0441]

b. 0.0122 [0.0090, 0.0169] 0.0113 [0.0080, 
0.0145]

0.0125 
[0.0076, 
0.0170]

c. 0.0191 [0.0088, 0.0250] 0.0194 [0.0110, 
0.0243]

0.0221 
[0.0183, 
0.0283]

a, b, and c 
applied

0.0078 [0039, 0.0125] 0.0079 [0043, 
0.0126]

0.0085 
[0048, 
0.0129]

a. Baseline population was Health Survey for England 2014 (instead of 2012), b. 
Discount rate of 3.5% applied (instead of no discount), c. Baseline utility from 
HSE 2014 (instead of 1), QALY– Quality Adjusted Life Years
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Results
Impact of standardising the model setup
Three changes were made to the HC to reflect the model 
step-up used in the SPHR model.

a.	 Baseline population was HSE 2014 (instead of 2012).
b.	 Discount rate of 3.5% applied (instead of no 

discount).
c.	 Baseline utility from HSE 2014 (instead of 1).

The results of each change to the model, then of all adap-
tations were applied simultaneously are shown in Table 1 
alongside outcomes generated by the SPHR model. Dis-
counting had the largest independent impact on absolute 
QALYs. All following model comparisons were con-
ducted with all standardisation steps applied.

Comparison of model outcomes
Table  2 shows the estimated QALYs and health condi-
tions (per 1000) when no treatment effect is applied (for 
the original models, and for the HC model with stan-
dardisation steps applied). There were fewer strokes 
and CVD events and fewer cases of dementia in the HC 
model. The cases of dementia provided the largest differ-
ence in simulated health outcomes between the models. 
Between the original HC model and the standardised 
version, there are small differences in the number of 
events due to differences in the baseline population. The 
utility decrement for each condition is also shown in 
the table. The direct comparison of utility decrements is 
challenging because the HC model applies the decrement 
additively, whereas the SPHR model uses a multiplica-
tive model. However, the health decrements in the SPHR 
model will have a greater impact on QALYs in an other-
wise healthy population.

Table 3 shows the absolute and incremental QALYs for 
each simulated intervention group and natural history 

Table 2  QALYs and cases of and utility decrements associated 
with cardiovascular disease, dementia, and diabetes

Health Checks model Percentage 
difference

SPHR 
Model

Original Standardi-
sation 
steps 
applied

Original Stan-
dardisa-
tion steps 
applied

QALYs 11.37 
[10.51, 
12.16]

28.4 [27.7, 
29.2]

13.11 
[12.76, 
13.48]

15%

Cases (per 1000)
CVD 411 

[231, 
632]

350 [345, 
359]

350 [341, 
360]

-15% -15%

Stroke 208 
[110, 
324]

119 [114, 
126]

119 [115, 
127]

-42% -42%

Dementia 229 
[203, 
287]g

118 [113, 
125]

99 [96, 105] -48 -57%

Diabetes 356 
[164, 
486]

561 [550, 
570]

546 [535, 
555]

+ 58% + 53%

Utility Decrements
CVD 0.760 -0.12
Stroke 0.629 -0.21
Diabetes 0 

(com-
plica-
tions 
only)

0

Dementia 0.478–
0.93

-0.12

Note the SPHR decrements are applied using the multiplication method; the HC 
uses the addition method. QALY– Quality Adjusted Life Year, SPHR– School for 
public health

*With standardisation steps applied

Table 3  Absolute QALYs and incremental QALYs versus simulated natural history in the SPHR and HC models
Absolute QALYs Incremental QALYs compared to 

simulated natural history 
Incremental QALYs 
compared to simulated 
natural history (days)

SPHR Model Health Checks Model* SPHR model Health Checks 
Model*

SPHR model Health 
Checks 
Model*

Simulated natural history 11.3675 [10.5124, 
12.1586]

13.1084 [12.7644, 13.4805]

Brief intervention 11.3694 [10.5161, 
12.1584]

13.1154 [12.7644, 13.4808] 0.0019 [-0.0499, 
0.0416]

0.0078 [0.0039, 
0.0125]

0.7 [-18.2, 4.6] 2.8 [1.4, 
4.4]

12-week intervention 11.3923 [10.5479, 
12.1737]

13.1157 [12.7647, 13.4809] 0.0248 [-0.0024, 
0.0599]

0.0079 [0.0043, 
0.0126]

9.1 [-0.9, 21.9] 2.9 [1.6, 
4.6]

52-week intervention 11.3973 [10.5663, 
12.1715]

13.1160 [12.7656, 13.4845] 0.0298 [-0.002, 
0.0688]

0.0085 [0.0048, 
0.0129]

10.9 [-0.1, 25.1] 3.1 [1.8, 
4.7]

QALY– Quality Adjusted Life Year, SPHR– School for Public Health

*With standardisation steps applied
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control. The total QALYs estimated by the HC model 
were higher in all treatment groups with no overlap in 
PSA credible intervals (Table  3). There was a large dif-
ference in incremental QALYs, and the credible inter-
vals for the SPHR model overlapped the HC model. 
The SPHR simulated greater QALY gains for 12-week 
WW and 52-week WW relative to the Brief Interven-
tion. Comparisons across socioeconomic groups found 
a stronger socioeconomic gradient in the SPHR model, 
and the results are reported in Table S6 in Supplementary 
Appendix B.

Impact of iterative adjustments to identify drivers of 
differences in outcomes
Remove the impact of treatment on HbA1c from the SPHR
Making this adjustment resulted in more similar incre-
mental QALYs between the two models, but the SPHR 
model still predicted a greater difference between the 

brief intervention and the 12-week and 52-week inter-
ventions than the HC model (Fig. 1, Table S7 of the sup-
plementary material).

Same health conditions
The analysis was run on models adapted to include only 
the conditions that the two models have in common 
(diabetes, dementia, and CVD) removing microvascular 
complications, congestive heart failure, osteoarthritis and 
cancer from the SPHR model and lung cancer from the 
HC model. This was combined with the previous adap-
tation (i.e., the treatment effect on HbA1c was removed 
from the SPHR model). Absolute and incremental QALYs 
became more similar across models (Fig.  1, Table S7 of 
the supplementary material).

Fig. 1  Incremental QALYs between each treatment scenario (brief intervention, 12-week intervention and 52-week intervention) and simulated no inter-
vention scenario for each model (HC: Health Checks Model and SPHR: School for Public Health diabetes prevention model) for the main analysis and for 
four scenario where adjustments have been made to one or both models (A. impact of treatment on HbA1c removed from the SPHR model, B. Models 
run only with the condition represented in both models (diabetes, dementia, and CVD) plus scenario A, C. Estimate trajectories of risk factors based on 
ELSA dataset in the SPHR model, and D. Scenario B and C are combined so that all structural changes described were applied)
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Use ELSA trajectories in the SPHR model
When the SPHR model was run with the trajectories 
of risk factors based on an analysis of the ELSA data-
set rather than the Whitehall II dataset, there were very 
small changes to the incremental QALYs. There was a 
negative incremental QALY when comparing the brief 
intervention to natural history. This negative incremental 
QALY for the brief intervention was due to higher simu-
lated BMI in the brief intervention arm compared with 
the simulated natural history using the ELSA trajectories. 
(Fig. 1, Table S7 of the supplementary material).

All structural changes applied
Sensitivity analyses A, B and C were applied together. As 
above, the brief intervention arm produces a higher BMI 
over time than the simulated natural history, which leads 
to a loss of QALYs in the brief intervention arm. (Fig. 1, 
Table S7 of the supplementary material).

Figure  1. Incremental QALYs compared to the simu-
lated no intervention arm.

Discussion
Estimates of long-term effectiveness of the weight man-
agement programme were similar using the SPHR and 
HC models after adjusting for explainable differences, 
namely, removing effects of weight management on 
HbA1c, limiting the models to a common set of health 
outcomes, and using a common dataset to derive meta-
bolic trajectories. Since the SPHR model includes stron-
ger evidence on the effect of weight management on 
HbA1c, the results of this cross-model validation support 
the existing cost-effectiveness analysis [4] and provide 
additional confidence in those estimates.

These findings reflect the suitbaility of the SPHR model 
for the deicision problem; the models original purpose, to 
evaluate diabetes prevetion strategies, resulted in a focus 
on diabetes-related risk factors (including HbA1c) and 
outcomes. There was a signifincant change in HbA1c in 
the intervention evaluated and the SPHR model enabled 
long-term modelling of this effect. In contrast, the HC 
model was developed to represent the impact of health 
checks for adults between the age of 40 and 74 and this 
health check could result in upto 4 treatments; statins, 
antihypertensives, smoking cession and weight manage-
ment. This is reflected in the outcomes modelled (e.g., 
lung cancer) and diabetes was not a focus of the model. 
Therefore, one of the impacts (change in HbA1c) of the 
intervention could not be modelled in the HC model.

The process of cross-model validation resulted in a 
deeper understanding of the characteristics and sensi-
tivities in the models. By identifying the features of the 
model that explain differences, it is possible to reflect 
on whether they should be included in the final analy-
sis. The process of cross-model validation we conducted 

highlighted that the inclusion of HbA1c was the most 
important driver of differences in incremental QALYs; 
and that the inclusion of diabetes-related complica-
tions was most important for differences in total QALYs. 
These observations highlight the importance of model-
ling the interdependence between obesity and diabe-
tes outcomes. The model comparison process can also 
inform future decisions around the development of both 
the existing models and new models. We conclude that 
cost-effectiveness analyses of weight management inter-
ventions should consider representing the intervention 
effects on HbA1c to avoid potentially underestimating 
the cost-effectiveness.

This analysis has several strengths. First, collabora-
tion between model developers throughout the process 
enabled greater understanding of the models, enhanced 
error checking, discussion of results and setting priori-
ties for comparison. This collaboration, along with access 
to all model code, facilitated a model comparison pro-
cess where models can be incrementally adapted to iso-
late and understand drivers of differences in outcomes. 
Increase in the use of open source health economic mod-
els will support cross-model validations [20] as there will 
be more models for which full model code is available. 
Second, we have demonstrated how a process of cross-
model validation can be used to compare complex pub-
lic health microsimulation models. Existing validation 
methods and recommendations [6, 10] are not always 
practical for all model types. For example, the potential 
for differences in model boundaries, model structures, 
and specification of input parameters increases as the 
number of health outcomes increases, and public health 
models are more likely to adopt complex model struc-
tures [21]. This makes it difficult to draw conclusions 
about what is an acceptable difference between model 
outcomes, and there are likely to be a wide range of out-
comes of interest, including prevalence of health condi-
tions, costs and QALYs, and these may differ between 
models. Finally, the in-depth comparison can be used to 
inform future model development. Squires et al. recom-
mend that when developing and justifying the structure 
of a new model, any existing health economic models 
should be reviewed [22]. Cross-model validation has the 
potential to provide information for this stage of develop-
ment, but it is often reported very briefly as part of model 
development if at all, and there is a missed opportunity 
for this to inform future model development. A greater 
emphasis on reporting cross-model validation in detail, 
either as a separate publication or within supplementary 
material, can enable the results to have an impact beyond 
the decision problem. Our method can be a starting point 
that can be used and tested in other model comparisons.

While conducting the model comparison, we identified 
challenges that are likely to be common to cross-model 
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validation, so we discuss the justification for the approach 
taken. First, each model was developed for a different 
purpose and then adapted to examine the long-term 
effectiveness of the weight management intervention. 
They were therefore structurally different, which made it 
challenging to decide on the extent to which the models 
can be standardised, and which changes to make when 
conducting iterative adjustment to the model. Broadly, 
in standardisation we intended to ensure that the model 
setup is consistent in terms of the eligible population, 
time horizon, discount rate, and perspective. This devi-
ates from other cross-model validation approaches that 
aim to align model inputs prior to examining structural 
differences [6]. We found that using a common set of 
parameter inputs was not feasible, particularly for mul-
tivariate risk equations that are conditional on multiple 
characteristics and different methodologies for applying 
utility decrements. These differences are more likely to 
arise in microsimulation models, which allow for com-
plex relationships to be represented. We then intended to 
interrogate the structural assumptions and data sources 
informing long-term health outcomes. Although there 
were multiple potential iterations, we could have con-
ducted, resource constraints meant that our choice of 
which changes to make was informed by the outcomes of 
the standardisation steps, the initial model comparison, 
and discussions with the model developers.

Second, it was difficult to decide which of the multiple 
potential outcomes to examine and report. Public health 
economic evaluations often need to consider a broad 
range of outcomes, time horizons, and cost perspectives 
[22]. As a consequence, we decided that the validation 
process should aim to make comparisons across out-
comes that will inform the validation process or impact 
decision-making. In public health microsimulation mod-
els, this may include subgroup analyses, as these results 
may impact conclusions regarding equity impacts for an 
intervention. Detailed cross-model validation that pro-
vides an in-depth assessment of consistency across mul-
tiple model outcomes, including uncertainty analyses and 
subgroup analyses, has the potential to provide a much 
greater understanding of the differences between the 
models, as demonstrated. While the validation should 
include outcomes that will impact decision-makers 
(costs and QALYs), it should also extend to include other 
intermediate outcomes to help understand what may be 
driving the differences. However, steps taken to under-
stand drivers of difference may involve changing isolated 
factors of the model and caution should be taken when 
interpreting these results. For example when we exam-
ined the impact of including the same conditions only by 
removing health conditions from each model, we made 
the decision not to adjust other-cause mortality due to 
the extent of structural changes required. These results 

inform our understanding of the drivers of differences 
between the models but the outcomes of this scenario 
could not be used to inform decision-making. Caution 
should be taken when making changes to individual parts 
of the model to consider the unintended consequences 
on other outcomes. Finally, previous cross-model valida-
tion examples [6] have suggested that an acceptable mag-
nitude of difference between model outcomes should be 
identified in advance of the model comparison. However, 
in the absence of cost estimates, it was not possible to 
calculate the acceptable magnitude of differences based 
on decision impacts.

While conducting the cross-model validation, we 
developed some proposed recommendations (detailed in 
Supplementary Material, Appendix D). However, the cur-
rent cross-model validation is based on a comparison of 
two broadly similar microsimulation models, which pro-
vides a useful but limited overview of opportunities and 
challenges for model comparison. A different set of chal-
lenges may arise if validating a detailed microsimulation 
model against a different modelling structure, for exam-
ple, a multistate lifetable model structure often used in 
public health evaluations. It is possible that future cross-
validation will build on this, and other existing detailed 
model comparisons, to help to develop and refine a set 
of recommendations that can be formalised into a stan-
dardised best practice guide for modellers.

Conclusions
The cross-model validation process supported the find-
ings of the initial cost-effectiveness analysis of this weight 
management programme and identified which structural 
differences contributed most to differences in outcomes. 
The process we have reported addresses the need for 
more examples of cross-validation approaches for public 
health economic models and is a preliminary step in the 
development of cross-model validation guidelines spe-
cific to complex interventions.
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