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Abstract 

Background Protecting public health from infectious diseases often relies on the cooperation of citizens, espe-
cially when self-care interventions are the only viable tools for disease mitigation. Accordingly, social aspects related 
to public opinion have been studied in the context of the recent COVID-19 pandemic. However, a comprehensive 
understanding of the effects of opinion-related factors on disease spread still requires further exploration.

Methods We propose an agent-based simulation framework incorporating opinion dynamics within an epidemic 
model based on the assumption that mass media channels play a leading role in opinion dynamics. The model simu-
lates how opinions about preventive interventions change over time and how these changes affect the cumulative 
number of cases. We calibrated our simulation model using YouGov survey data and WHO COVID-19 new cases data 
from 15 different countries. Based on the calibrated models, we examine how different opinion-related factors change 
the consequences of the epidemic. We track the number of total new infections for analysis.

Results Our results reveal that the initial level of public opinion on preventive interventions has the greatest impact 
on the cumulative number of cases. Its normalized permutation importance varies between 69.67% and 96.65% in 15 
models. The patterns shown in the partial dependence plots indicate that other factors, such as the usage of the pro-
intervention channel and the response time of media channels, can also bring about substantial changes in disease 
dynamics, but only within specific ranges of the dominant factor.

Conclusions Our results reveal the importance of public opinion on intervention during the early stage of the pan-
demic in protecting public health. The findings suggest that persuading the public to take actions they may be hesi-
tant about in the early stages of epidemics is very costly because taking early action is critical for mitigating infectious 
diseases. Other opinion-related factors can also lead to significant changes in epidemics, depending on the average 
level of public opinion in the initial stage. These findings underscore the importance of media channels and authori-
ties in delivering accurate information and persuading community members to cooperate with public health policies.
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Introduction
Preventative interventions, such as mask-wearing, social 
distancing, hand-washing, and vaccination, often require 
active participation from citizens for them to be effec-
tive against infectious diseases [27]. Beliefs, opinions, and 
behaviors have become key elements in disease mitiga-
tion during recent pandemics, given the impact of com-
pliance with public health policy. For example, in several 
countries, participation in these preventive interventions 
was not sufficiently high to halt the spread of the SARS-
CoV-2 virus [13]. Instead, multiple sources disseminated 
misinformation that fostered distrust in preventive inter-
ventions [57], and people exhibited unexpected behaviors 
[26, 65]. Social aspects of pandemics that are relevant to 
public opinion, such as polarization and social segrega-
tion, have drawn the attention of researchers and were 
accused of being a threat to public health during the pan-
demic [32, 34, 35, 40]. Studies by these researchers have 
shown either the existence of such social phenomenon 
during the COVID-19 pandemic or the statistical signifi-
cance of factors on the outcomes of disease spread. How-
ever, they have not thoroughly explained the mechanisms 
of how the consequences of the pandemic could vary 
under different social conditions, as their approaches are 
separate from existing epidemic modeling.

The objective of this paper is to examine how vary-
ing conditions in opinion dynamics can influence the 
coevolving disease dynamics and public health through 
a comprehensive epidemic model. To achieve this, we 
introduce an agent-based simulation framework that 
incorporates the change in people’s opinions about inter-
ventions over time into an existing disease model, serving 
as the basis of our study. We calibrate our models using 
data from 15 countries to demonstrate our framework’s 
ability to replicate key aspects of the COVID-19 pan-
demic. These calibrated models also serve as proxies to 
investigate how different opinion-related factors impact 
epidemic outcomes. Factors related to opinion dynam-
ics, such as the public’s initial opinion on preventive 
interventions, media usage for pro-intervention chan-
nels, news audience polarization, and echo chambers, are 
included in our experiments and analysis. We evaluate 
the permutation importance of each factor in determin-
ing the cumulative number of new cases. Additionally, we 
expand our analysis through partial dependence plots to 
explore the compounding nonlinear effects of these fac-
tors on disease dynamics.

Related literature
Many sociology, political science, and data science 
researchers reported that the COVID-19 pandemic is 
a social problem as it is politicized in the US, UK, and 
other European countries [32, 34, 35, 40]. Some also 

claimed that the politicized nature of the pandemic is 
culpable for public distrust in health-protective inter-
ventions [32, 35, 40]. Jiang et al. found that conversations 
on Twitter regarding COVID-19 in the US are primar-
ily shaped by political affiliation and reveal that there is 
significant segregation between the two opposing politi-
cal communities [32]. According to their study, in the 
US, partisanship is one of the significant factors that 
drive the evolution of public belief in COVID-19 issues. 
Kerr et al. also verified the same proposition that the US 
public responses to the COVID-19 pandemic had been 
politicized [35]. Jungkunz presented that a similar politi-
cal polarization in the COVID-19 discussion was found 
in Germany. Both Kerr et  al. and Jungkunz claimed 
that the COVID-19 pandemic could have been man-
aged more efficiently if we had cross-party consensus 
on COVID-19 countermeasures [34, 35]. Makridis and 
Rothwell demonstrated that political affiliation mediates 
the effectiveness of disease mitigation policies by analyz-
ing Gallup Panel data [40]. The authors also claimed that 
the adopted policies were moved away from the optimal 
as a consequence of the politicization of COVID-19. 
Some other researchers reported observing online “echo 
chambers” in the context of COVID-19, suspecting that 
they amplify the spread of misinformation [15, 33, 62], 
while they could not provide evidence that these echo 
chambers change the coevolving disease dynamics. The 
aforementioned studies have emphasized the impor-
tance of social aspects in disease mitigation from various 
perspectives. However, because these studies differ from 
traditional epidemic modeling approaches, many aspects 
of COVID-19 remain unanswered, such as changes in 
disease dynamics under different conditions of opinion 
dynamics. It is crucial to explore the comprehensive 
nature of epidemics to develop effective policies that 
take public opinion into account.

As researchers began to view the COVID-19 pandemic 
as a social phenomenon rather than just a medical emer-
gency, there were attempts to incorporate social behav-
iors into epidemic models [10, 37, 47, 51, 63]. She et al. 
proposed a mathematical model that integrates the dis-
ease dynamics of the susceptible-infectious-susceptible 
(SIS) model with opinion dynamics within a networked 
population [51]. The authors derived generic results for 
disease extinction from this combined model through 
analytical means. Bhowmick and Panja’s study also mod-
eled opinion dynamics and disease dynamics simulta-
neously on a multiplex network and sought to identify 
mathematical conditions for disease-free equilibrium 
[10]. Retzlaff et al. presented an agent-based model that 
simulates disease spread while considering people’s pro-
tective behavior in response to different media mes-
saging, with a focus on how people’s fear grows and 
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diminishes [47]. Wang et  al. attempted to find effective 
policies in the presence of misbehaving agents using a 
comprehensive model [63]. Kuo and Wen addressed the 
problem using a data-driven model that incorporated 
geographical details based on the Taipei metropolitan 
area [37]. Their model includes parameters related to 
public awareness and people’s willingness to undergo 
testing. However, the simplified aspects of the coevo-
lution of public awareness still leave room for further 
exploration, and there is a lack of consideration for the 
varied patterns of opinion dynamics observed in different 
countries during the COVID-19 pandemic.

Despite the efforts and achievements of these studies, 
the interplay between factors related to public opinion 
and disease spread still requires further explanation. Spe-
cifically, simulation modeling studies that integrate data-
sets from both opinion dynamics and disease dynamics 
remain rare due to the high complexity of such mod-
els. Also, opinion-related factors in the comprehensive 
models have received less attention compared to the 
characteristics of the spreading disease itself despite its 
importance.

Model and methods
We propose an agent-based simulation framework that 
integrates opinion dynamics and disease dynamics, 
assuming that an agent’s opinion determines its behavior. 
As shown in the left-upper corner of Fig. 1, our simula-
tion model is based on the assumption that every agent 
in the system receives messages from two different mass 
media channels: each channel broadcasts pro-interven-
tion messages and anti-intervention messages, respec-
tively. The following subsections explain the components 
and procedures of our agent-based simulation model.

Network layers
We consider a population of N individual agents, and 
two mass media channels ( M1 and M2 ). Our model 
simulates a polarized mass media environment where 
two mass media channels broadcast opposing messages 
regarding preventive interventions. M1 and M2 repre-
sent these two channels. Agents are connected to each 
other over two distinct undirected network layers: opin-
ion network ( Go = (A ∪ {M1,M2},Eo) ) and physical 
contact network ( Gc,t = (A,Ec,t) ), where A denotes the 
set of vertices that correspond to each individual agent, 
and Ec,t and Eo denote the sets of edges connecting ver-
tices in Gc,t and Go , respectively. Agents receive others’ 
opinions and uncertainty from their neighbors in the 
opinion network to update their own. Also, agents make 
physical contact with their neighbors in the contact net-
work and may transmit disease or be exposed to the dis-
ease. By neighbors of an agent-i, we refer to the set of 
agents that are connected to the agent-i by an edge.

Each network layer is expressed as an undirected, 
unweighted simple graph with no self-loops, assuming 
interactions in both networks are mutual. We suppose 
that the opinion network layer is static, assuming that 
people share their ideas with their trusted few only. On 
the other hand, we use different random-generated con-
tact networks with the same degree configuration at each 
time t. This setup enables us to utilize the network-based 
compartmental model as our approximation model for 
model calibration. This is because the network-based 
compartmental model distinguishes the population 
based on their degrees but does not keep a specific net-
work structure over time. The degree distributions of 
networks ( Go and Gc,t ) follow Poisson random distribu-
tions, which are widely accepted in networked epidemic 

Fig. 1 Schematic of the simulation model. Each individual agent (gray or red node) has attribute values that define its behavior and status 
throughout a simulation run via a given opinion dynamics model. Two channels broadcast their own opinions to the individual agents
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modeling studies, with mean degrees denoted as 〈k〉(o) 
and 〈k〉(c) , respectively [9, 59]. Opinion network instances 
are generated by the social distance configuration (SDC) 
model suggested by Talaga and Nowak to test the impact 
of different levels of homophily in the opinion network 
[55]. Contact network instances are generated by the 
Newman et al’s configuration model [42].

Individual agents
Other than its own connections within the two networks, 
each individual agent has six attribute values that define 
its behavior and status throughout a simulation run. 
Some attributes are updated at each time step t, whereas 
other values are fixed. Each agent-i has 6 attributes: an 
opinion value on intervention ( oi,t ), an uncertainty value 
in their own opinion ( ui,t ), a media usage ratio ( mi ), a 
channel usage ratio for M1 ( gi ), compliance-to-interven-
tion state ( ci,t ), and disease state ( di,t).

The opinion value ( oi,t ∈ [0, 1] ) of an agent indicates 
how strongly an agent agrees to or trusts in the inter-
vention’s effectiveness. oi,t also functions as the prob-
ability that the corresponding agent complies with the 
intervention at time t. For example, o13,10 = 0.7 means 
agent-13 complies with the intervention during the time 
step t = 10 with a 70 percent probability. Two types of 
external influences update an agent’s opinion value. One 
is from mass media channels, and the other is from one’s 
neighborhood on the opinion network Go.

The value ui,t describes how uncertain or stubborn an 
agent is about its own opinion. If an agent’s uncertainty 
is low, then the agent is stubborn about its opinion and 
does not change its opinion easily. If an agent’s uncer-
tainty is high, then the agent is likely to change its opin-
ion from external influences. These two attributes follow 
the definition in the relative agreement (RA) model sug-
gested by Deffuant et al. [17]. As the RA model describes, 
agents update their uncertainty values whenever they 
update their opinions. The detailed updating rules are 
described in the following section as a simulation proce-
dure. We assume that the initial uncertainty is uniform 
across the general public.

The media usage ratio ( mi ∈ [0, 1] ) represents an 
agent’s relative usage of mass media channels ( M1,M2 ) 
compared to its neighborhood in the opinion network. 
In other words, when selecting an information source 
for opinion updating, the agent chooses either mass 
media channel M1 or M2 with a probability of mi or 
its neighborhood in Go with a probability of 1−mi . For 
problem simplification, the total amount of exposure to 
new information for individual agents is assumed to be 
homogeneous.

The channel usage ratio for M1 ( gi ∈ [0, 1] ) represents 
the proportion of agent i’s M1 usage out of the agent’s 
total mass media usage. As we are assuming two different 
media channels in this study, the channel usage ratio for 
M2 is equal to 1− gi . In the simulation, an agent selects 
M1 with probability gi and selects M2 with probabil-
ity (1− gi) when the agent is in the stage of selecting a 
mass media channel for opinion attribute updating. We 
assume that an individual’s media consumption prefer-
ence represented by these two ratios does not change 
within the simulated period. For the initialization of ui,t , 
we suppose that all the agents in the system have homo-
geneous initial uncertainty to simplify our model, follow-
ing the uncertainty initialization for non-extremist agents 
in Deffuant et al’s setup [17].

We initialize the three attributes, oi,t , mi , and gi , using a 
beta distribution with mean and variance values chosen 
to ensure they fall within the range of 0 to 1, capturing 
the potential for polarization between two opposing pref-
erences [5]. Beta distributions are well-suited to model 
bell-shaped and U-shaped patterns, which have been 
observed in studies of opinion polarization [24, 39, 60]. 
Specifically for mi values, we use a bell-shaped distribu-
tion, as the preference between mass media and social 
media is beyond the scope of our research. We set the 
mean and variance of the distribution to 0.5 and 0.01 for 
problem simplification, given the complex and unclear 
nature of people’s preferences in this context [6, 44, 45, 
52]. As for the other two attributes, their mean and vari-
ance are treated as free parameters for model calibration.

The compliance-to-intervention state ( ci,t ) is a binary 
attribute. It has a value of 1 when agent i complies with 
the intervention at time step t and 0 otherwise. At each 
time step, each agent sets ci,t = 1 with probability oi,t and 
ci,t = 0 with probability 1− oi,t.

An agent’s disease state ( di,t ) shows which state of dis-
ease the agent i is in. Our simulation model is based on 
the SEIRS model on networks, which is an agent-based 
simulation version of the SEIRS model, a common model 
for diseases with an incubation period and waning 
immunity [38]. In this disease model, an agent has a dis-
ease state, one of “Susceptible (S)”, “Exposed (E)”, “Infec-
tious (I) or “Recovered (R)”.

Mass media channel agents
We have two mass media channels ( M1 and M2 ) that 
drive the opinion dynamics. These two channels rep-
resent two groups of mass media channels that have a 
similarity in news content within each group and also 
have a significant difference between groups. Unlike indi-
vidual agents, opinion and uncertainty values of M1 and 
M2 are fixed throughout each simulation run, like stub-
born agents or extremist agents in the existing studies in 
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opinion dynamics [17, 18, 21, 22, 50]. We fix the opinion 
values on the intervention that M1 and M2 broadcast at 
0.9 and 0.1 through a simulation run, respectively, to sim-
ulate the media environment with two opposing opin-
ions. That is, M1 ’s messages are pro-intervention while 
M2 ’s are anti-intervention.

To simulate varied response times of the media to the 
pandemic, we initialize the uncertainty values for M1 
and M2 to be very high (10.0). This ensures that their 
messages do not impact public opinion or gain serious 
consideration from the people. After a predetermined 
response time, we set the uncertainty of the anti-inter-
vention channel at 0.25, while varying the uncertainty of 
the pro-intervention channel between 0.05 and 0.25 to 
test different combinations of relative strengths between 
the two channels. Note that in the RA model, opinions 
with sufficiently large uncertainty do not influence oth-
ers’ opinions. These effects combine to create a popula-
tion of agents that begins to be influenced by mass media 
channels after a response time has elapsed.

Simulation procedures
Our main simulation consists of two sub-procedures 
that operate in turn at each time step t. In each sub-pro-
cedure, all agents are simultaneously activated following 
the synchronous activation regime [3]. Figure  2 shows 
the overall sequence of the main ABM simulation proce-
dure for a single trial. After initialization, the sub-proce-
dure of updating opinion-related attributes ( oi,t and ui,t ) 
is activated first, and then the sub-procedure of updating 
disease-related attribute ( ci,t and di,t ) is activated next. 
The stopping condition is satisfied when the time step (t) 
reaches the designated end time.

The first sub-procedure is based on the RA model 
proposed by Deffuant et al.. In this sub-procedure, each 
agent selects an object for interaction from the opin-
ion network, which could be one of the two mass media 
channels or a randomly selected individual agent from 
its neighborhood in Go . During this sub-procedure, the 
attributes oi,t and ui,t of Agent-i are updated as follows: 

where µo and µu denote the two update rates for opin-
ion and uncertainty, respectively, while oext and uext 
denote the external opinion and uncertainty chosen for 
learning. As in the original RA model, updates occur 
when the condition h > uext is met, where h is defined 
as h = min(ui,t ,uext + |oi,t − oext|)−max(−ui,t , |oi,t − oext| − uext) . h 
represents the overlap between the segments of Agent-i 
and the external source. These segments are defined by 
their opinion and uncertainty, respectively, representing 
the agents’ ranges of acceptance.

In the second sub-procedure, we assign 1 to compli-
ance-to-intervention state ( ci,t+1 ) with probability of 
oi,t+1 and 0 with probability of 1− oi,t+1 . Then, we deter-
mine di,t+1 from di,t and its neighbors’ disease states at t. 
Figure  3 shows how agents’ disease states change. Each 
agent in [S]t , [E]t , [I]t , and [R]t changes its disease state 
following the arrow with the corresponding probabil-
ity, where [A]t denotes the set of agents that are in the 
disease state of A at time t. For example, each agent in 
“Susceptible” changes its disease state to “Exposed” with 
probability �ijt for each contact edge ( (i, j) ∈ [SI]t ) with 
its infectious neighbor, where [SI]t denotes the set of con-
tact edges between susceptible agents ( [S]t ) and infec-
tious agents ( [I]t ) at time t.

In this study, we assume that the preventative interven-
tion is practically effective in reducing the transmission 
rate if one of the interacting neighbors cooperates with 
the intervention (i.e. mask-wearing and social distanc-
ing). In the simulation, the impact of an agent’s behavior 
on the intervention is implemented as follows:

where ρ denotes the intervention’s effect on the disease 
transmission rate. For example, masks can block from 
67% to 99% of viruses in aerosols, depending on their 
materials [61]. As reported by multiple studies, there 

(1a)oi,t+1 = oi,t + µo(h/uext − 1)(oext − oi,t)

(1b)ui,t+1 = ui,t + µu(h/uext − 1)(uext − ui,t)

(2)�ijt = (1− ρmax(ci,t , cj,t))�0

Fig. 2 Main ABM simulation procedure for a single trial
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were multiple substantial changes in the intervention 
policies (e.g., easing of restrictions) and people’s behav-
ior (e.g., summer vacation) during the first summer of the 
COVID-19 pandemic [12, 23, 67]. To incorporate such 
temporary changes in a simplified form, we allow our 
model to adjust the intervention’s effectiveness ( ρ ) during 
a certain period ( [ta, tb] ) by (1− δ).

Network‑based compartmental model as an approximate 
counterpart
The network-based compartmental model Eqs.  (3)-(9) is 
used to approximate the disease dynamics of the agent-
based model we suggested. The model is modified from 
the one suggested in Liu and Zhang’s study to use the 
transmission rate as a function of opinion values [38]. 
This approximation is used to find the fitted values for 
disease dynamics parameters more efficiently by avoid-
ing ABM’s heavy computation loads. We first fit opin-
ion parameters using the first submodel of the ABM and 
then generate the opinion dynamics sequences. Next, we 
compute the sequence of the average effective transmis-
sion rate over all pairs of a random contact network ( �t ) 
with the given mean degree 〈k〉(c) , so that we can use the 
sequence as an input to the approximation model.

(3)
d

dt
Sk(t) = ωRk(t)−

k �̄t · ψ(t)

�k�(c)
Sk(t)

(4)
d

dt
Ek(t) =

(

k�̄t · ψ(t)

�k�(c)

)

Sk(t)− σEk(t)

(5)
d

dt
Ik(t) = σEk(t)− γ Ik(t)

Parameter fitting and experiment design
The remainder of our study comprises two parts. First, we 
calibrate our model using two data sequences (i.e., one 
for opinion dynamics and the other for disease dynam-
ics) from 15 different countries for two primary objec-
tives: demonstrating that our model can replicate specific 
aspects of the real world and obtaining 15 parameter 
tuples to build testbeds for examining a selected set of 
opinion-related factors. Given the widely varied opinion-
disease patterns observed across the 15 countries, the 15 
testbeds generated through model calibration provide a 
diverse and viable set of artificial environments for our 
experiments. Note that Testbeds 1 to 15 are calibrated 
with datasets corresponding to 15 countries: Australia, 
Canada, Denmark, France, Germany, Italy, Japan, Neth-
erlands, Norway, Singapore, Spain, Sweden, the UK, the 
USA, and Vietnam.

In the subsequent sections, we explain the details 
of the parameter fitting process and provide descrip-
tions of the calibrated parameters. Then we explain the 
design of experiments that are employed to test the six 

(6)
d

dt
Rk(t) = γ Ik(t)− ωRk(t)

(7)�t =
1

|EC |

∑

eij∈EC

�ijt

(8)�ijt = (1− ρ(1− δ1t∈[ta,tb]) ·max(ci,t , cj,t)))�0

(9)ψ(t) =
∑

h

hP(h)Ih(t)

Fig. 3 Schematic of the modified SEIRS disease transmission model with variable transmission rate
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opinion-related factors. These experiments are con-
ducted based on each of the testbeds 1 to 15.

Data and fitting methods
We calibrated the submodel of opinion dynamics using 
data from the YouGov survey [20]. We utilized responses 
to the question, ‘How often have you worn a face mask 
outside your home (e.g., when using public transport, vis-
iting a supermarket, or going to a main road)?’ as prox-
ies for people’s opinions on preventive interventions. We 
quantified the answers by assigning values of 0.0, 0.25, 
0.5, 0.75, and 1.0 to the responses ‘Not at all,’ ‘Rarely,’ 
‘Sometimes,’ ‘Frequently,’ and ‘Always,’ respectively, 
assuming the responses were evenly distributed within 
the interval [0, 1]. Next, we calculated weighted averages 
of these values within each 5-day time frame. To account 
for time frames with no data points, we performed linear 
interpolation using the nearest available data points. The 
submodel of disease dynamics is calibrated using WHO 
data on COVID-19 new cases [66]. We use both datasets, 
specifically the observations from the first 250 days start-
ing from April 1, 2020, which predates the introduction 
of COVID-19 vaccination. This is because the model only 
incorporates non-pharmaceutical interventions. We also 
assume that 48% of the total cases are reported based on 
Schulman et  al’s report [49] and adjust the WHO data, 
accordingly.

We have fitted 10 opinion model parameters ( O1,...,O10 ) 
and 7 disease model parameters to data from 15 coun-
tries. The ranges and granularity of these parameters are 
shown in Tables  1 and  2. Because our model assumes 
no feedback loop from the disease model to the opinion 
model, we fit the two sets of parameters, separately: opin-
ion model parameters first to the data derived from the 
YouGov survey, and disease model parameters later to the 
WHO daily new cases data. This reduces the complex-
ity of the parameter space exploration to find the fitted 
tuples. We also use the approximation model Eqs. (3)-
(9) instead of the agent-based model in disease-related 
parameter fitting to reduce the computational burden. 
The similarity scores measured in RMSE between the 
approximation models’ results and the agent-based mod-
els’ results are attached in the Appendix.

For the model fitting method, we utilize basin-hopping 
with multiple starting points (200 in each stage, gener-
ated by using Latin hypercube sampling with minimax 
correlation criterion) as a global search optimizer, and 
sequential quadratic programming as a local search opti-
mizer [36, 43]. The objective of the fitting process is to 
minimize the root mean square error (RMSE) between 
the data and the simulated sequence in each step.

In Fig.  4, we show the results of parameter fitting for 
data sets from 15 countries (Testbeds 1 to 15). Opinion 

dynamics are shown in the first column and disease 
dynamics are shown in the second and third. Data 
sequences (YouGov data and WHO data) are presented 
in red lines, while the average sequences of 2,000 simu-
lated ABM instances are plotted in black lines with 95% 
confidence intervals in grey areas. The results from the 
approximation disease model are plotted in blue dotted 
lines. The results show that the combination of opinion 
and disease models of our choice can reproduce aspects 
of the selected datasets. We explain the calibrated param-
eter values of each testbed and their fitting scores in the 
Appendix.

Note that we chose a population size of 50,000 to 
ensure that new cases in each time step exceed 1 in most 
scenarios. Agent-based models cannot represent frac-
tional numbers of individuals in disease statuses, unlike 
compartmental models. This limitation prevents us from 
replicating disease sequences where most numbers are 
smaller than 1.0. As a result, our model does not yield 
stable results for the testbed based on datasets from 
Vietnam. Due to computational resource constraints, 
we opted for a population size of 50,000, necessitating 
the exclusion of the case. As shown in the last row of 
Fig. 4, the new cases per 50,000 are less than 1, resulting 
in a 95% confidence interval that is inconsistent with the 
average sequence.

Opinion‑related parameters
This subsection lists and explains the opinion model 
parameters. Table 1 provides detailed information about 
these parameters ( O1, . . . ,O10).

Mean (O1) and variance (O2) of the initial opinion 
values.O1 represents the mean of people’s initial level 
of agreement with the authority’s intervention. O2 is the 
variance of opinion values at t = 0.

As we can observe in the YouGov data sequences in 
Fig.  4, every population reacts to non-pharmaceuti-
cal interventions differently when it is initially intro-
duced to them during the early stage of COVID-19 [20]. 
The initial opinion values of agents on intervention 
( {oi,0|i = 1, . . . ,N } ) represent this difference in people’s 
first impressions of non-pharmaceutical interventions 
(NPIs). As mentioned in “Individual agents”  section, we 
use a beta distribution defined on the interval [0, 1] for 
oi,t generation while manipulating the two shape param-
eters to achieve the mean and variance of O1 and O2.

Mean (O3) and variance (O4) of pro-intervention 
news channel usage. Our model has two channels with 
opposing attitudes toward preventative intervention. O3 
and O4 describe the distribution of people’s usage of the 
pro-intervention news channel ( gi ). O3 represents the 
society’s average usage of the pro-intervention channel. 
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Fig. 4 Observed 5-day average opinion (average compliance level to intervention, 1st column) and disease (average new cases, 2nd and 3rd 
columns) sequences and their corresponding simulated sequences of an agent-based model for 15 countries. Plots in the 3rd column have 
adjusted y-axis scales to present the details
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O4 describes how much peoples’ usage values deviate 
from the mean ( O3).

Our model is designed to implement Prior and Web-
ster’s concept of polarization, which refers to the ten-
dency of audiences to polarize around two distinctive 
classes of content [46, 64]. This is because polarization 
regarding news consumption is considered one of the 
social aspects that aggravated the COVID-19 pandemic 
[35]. The polarization can be manipulated by O4 in our 
model, as high O4 means that there are more people 
with extreme channel preferences. We sample values 
from a beta distribution defined on the interval [0,  1] 
to generate gi’s, manipulating the two shape parameters 
to achieve the mean and variance of O3 and O4 . We use 
beta distribution to mimic the description of polarized 
distributions in Prior’s study [46].

Level of homophily in the opinion network (O5) is 
the level of homophily parameter used in the SDC net-
work generator suggested by Talaga and Nowak [55]. 
Note that we compute social distances between agents 
based on their static characteristics value pairs (gi,mi) . 
The homophilic structure in opinion-sharing networks, 
often referred to as “echo chambers,” is a major con-
cern during COVID-19 [15, 33, 62]. It is suspected to 

amplify the spread of misinformation, thus hindering 
disease mitigation efforts.

Response time of channels to disease spread (O6). 
There exists at least one significant change in each of 
the 15 sequences of compliance level data. We assume 
that this change is driven by channels’ starting to 
broadcast certain messages about NPIs. In our model, 
O6 is the number of time steps that two mass media 
channels wait until they start broadcasting messages 
about NPIs with low enough uncertainty.

The remaining parameters of the relative agreement 
model ( O7, . . . ,O10 ) are also calibrated in the model 
fitting. Uncertainty of the pro-intervention channel’s 
message ( O7 ) represents the strength of persuasion 
of the pro-intervention channel that is explained in 
“Mass media channel agents”  section (i.e., the uncer-
tainty of M1 ). Individual agents’ initial uncertainty ( O8 ) 
describes how susceptible the people are to the external 
information at the beginning ( {ui,0|i = 1, . . . ,N } ). The 
two convergence rates of opinion and uncertainty ( O9 
and O10 ) represent how fast the corresponding attrib-
utes converge in the simulation and are used in the 
updating rules (Eqs. 1a and 1b).

Table 1 The parameter space of opinion dynamics submodel

Remarks: 1Beta distribution; 2SDA model; 3RA model [17]

Parameter Description Notation Range Granularity

Mean of the initial opinions on  intervention1
O1 [0.10, 0.90] 0.010

Variance of the initial opinions on  intervention1
O2 [0.01, 0.08] 0.010

Mean of the usage for the pro-intervention  channel1 O3 [0.50, 0.85] 0.010

Variance of the usage for the pro-intervention  channel1 O4 [0.01, 0.12] 0.010

Level of homophily in the opinion  network2
O5 [1.0, 8.0] 0.500

Response time of channels to disease spread O6 [0, 200] 1.000

Uncertainty of the pro-intervention channel’s  message3
O7 [0.05, 0.25] 0.001

Individual agents’ initial  uncertainty3
O8 [0.50, 1.50] 0.001

Convergence rate: individual’s  opinion3
O9 [0.15, 0.25] 0.001

Convergence rate: individual’s  uncertainty3
O10 [0.15, 0.25] 0.001

Table 2 The parameter space of disease dynamics submodel

Remarks: 1[58]; 2[8, 31, 48, 54, 69]; 3[61]

Parameter Description Notation Range Granularity

Transmission rate per  contact1
�0 (0.014, 0.041) Rational

Average degree of contact  networks2 〈k〉(c) (6.0, 15.0) 0.1

Effectiveness of NPI  compliance3 ρ (0.67, 0.9999) Rational

Size of the infectious population at t = 0 (per 50,000) |[I]0| (5, UB) Integeral

Starting time of the temporary change in ρ ta (0, 210) Integeral

End time of the temporary change in ρ tb (ta , 250) Integeral

Degree of the temporary change in ρ δ (0.0, 0.9) Rational
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Disease‑related parameters
The proxy values reported in existing COVID-19 stud-
ies are used for the following three parameters: 1/σ 
(expected duration of the incubation period, 6.5 days), 
1/γ (expected duration of the infectious period, 18 
days), and 1/ω (expected duration of the natural immu-
nization, 180 days) [2, 14, 16]. In the fitting stage of the 
disease submodels, we assume that the three character-
istics of the infectious disease are equivalent in all 15 
models. We calibrate the following seven parameters to 
fit the approximation model to the data sequences by 
minimizing the RMSE between the simulated sequence 
and the new cases data: transmission rate per contact 
( �0 ), the average degree of contact networks ( 〈k〉(c) ), 
the effectiveness of NPI compliance ( ρ ), size of the 
infectious population at t = 0 ( |[I]0| ), starting time of 
the temporary change in ρ ( ta ), stopping time of the 
temporary change in ρ ( tb ), and rate of the temporary 
change in ρ ( δ ). Table  2 shows the descriptions, nota-
tion, and ranges of disease-related parameters. The 
UB in the table is the total number of new infections 
that occurred during the three-month period in each 
of the country’s data until April 1st, 2023. We also set 
the range of the δ differently for Testbed 10, built using 
the Singapore case data, (−0.5, 0.0) , while not allowing 
δ to lead to a negative � . No optimal parameter tuple 
that mimics Singapore’s disease dynamics data is found 
within the original parameter range. This is because 
Singapore’s case has a sharp peak in the very early stage 
and near eradication of the disease in the later stage, 
which is different from the other cases, which tend to 
have greater peaks during or after summer.

Experimental design
To report the six opinion-related factors’ ( O1, · · · ,O6 ) 
impact on the disease spread, we generate 10,000 dis-
tinct tuples from the ranges shown in Table 1 using Latin 
hypercube sampling with the minimax correlation cri-
terion. Each of the 10,000 tuples of parameters is exam-
ined with the 15 models fitted to different countries’ data. 
That is, all other parameter values except for the 6 factors 
of interest are fixed to the ones used in Fig. 4. For further 
analysis, we track the number of total new infections dur-
ing the simulation time ( YC ) and use the log base 10 of 
the values as the response variable. The log transforma-
tion is applied because epidemics tend to grow exponen-
tially under unfavorable conditions, rather than linearly 
in size.

Results
In this section, we analyze the outcomes of 10,000 dif-
ferent tuples of the six opinion-related factors for each 
of the 15 testbeds. We use random forest regression for 
result analysis, which is an ensemble learning method 
based on a collection of decision trees [11]. This choice 
is motivated by its capability to yield robust models with 
relatively high R2 values, even when dealing with nonlin-
ear and complex relationships between factors and the 
response [4]. The distributions of the 10,000 simulation 
outcomes based on each of the 15 testbeds are displayed 
as log-scaled violin plots in Fig. 5. The shapes and loca-
tions of these distributions are determined by the 11 
parameters that are fixed and not tested in this section. 
A lower mean value indicates that the fixed parameter 
set tends to result in relatively small numbers of cumula-
tive new cases, and vice versa. For instance, a small mean 

Fig. 5 Violin plots of the log-scaled epidemic size ( YC ) distributions of 10,000 simulation runs based on each of 15 testbeds. Each simulation run 
is based on a distinct opinion-related parameter tuple ( O1, . . . ,O6 ). Plots are sorted by the mean of the log-scaled epidemic size. Epidemic sizes are 
measured in the number of total new infections during the simulation time in a virtual social system with a 50,000 population size. The red dots 
in the figure represent the response values ( YC ) of the models fitted to the corresponding data. Plots show that the consequence could be much 
better or much worse depending on the given conditions of opinion dynamics
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degree in the contact network can lead to decreased YC , 
in general.

Note that in this paper, our focus is on present-
ing results for the first six opinion-related parameters 
( O1, . . . ,O6 ). This selection arises from the relatively 
greater difficulty in identifying counterparts indicat-
ing the remaining four parameters ( O7, . . . ,O10 ) in the 
YouGov survey or in other sources. This difficulty also 
leads to retrieving clear implications from the analysis 
result. The extended results, including all 10 opinion-
related parameters, can be found in Appendix B, where 
the results of the factor importance analysis and partial 
dependence plots are provided for all 10 parameters.

In the following subsections, we measure the nor-
malized permutation importance of each of the six 
opinion-related parameters using the random forest 
models and their corresponding R2 values. Permuta-
tion importance, an analysis technique commonly used 
with ML-based models such as ones generated by ran-
dom forest regression, quantifies the decrease in the 
model score resulting from the random shuffling of fac-
tor values [11]. For our results, we compute the average 
score loss over 30 random shuffles. Next, we explore 
the partial dependencies between the response and 
factors to understand the marginal effect of factors on 
the outcome of our explanatory model. Partial depend-
ence plots illustrate the dependence between the 
response and a set of input parameters of interest, mar-
ginalizing the values of all other parameters [28]. As a 

model-agnostic interpretation method for revealing 
how the model behaves as a result of changing inputs, it 
is broadly accepted in various fields, including medical 
studies and disease modeling [30, 41, 53].

Factor importance analysis: dominance of O1

Table  3 reports the normalized permutation impor-
tance of the six opinion-related factors in 15 dif-
ferent models. The mean of the initial opinions on 
intervention ( O1 ) dominantly affects disease spread in 
all 15 models, with importance values ranging between 
0.6967 and 0.9665. In most cases, the importance of O6 
has the second-largest value, ranging between 0.0118 
and 0.1912. The remaining factors appear to have a lim-
ited impact in comparison to O1 and O6 in response.

The high scores of O1 and O6 in the permutation 
importance remind us of the importance of early reac-
tion in the effectiveness of disease mitigation [25, 29]. 
Even though the public’s opinion can be changed over 
time, it is crucial to have people’s support in disease 
mitigation as early as possible. The result also implies 
that, for future epidemic situations, it is necessary 
to strengthen or maintain the social norm of wearing 
masks, social distancing, and general trust in scientifi-
cally proven interventions [1, 7]. Our result shows that 
maintaining high O1 can function as a behavioral vacci-
nation to the community for any future pandemic.

Table 3 Normalized permutation importance (sum to 1.0) of 6 opinion-related factors in their corresponding random forest 
regression models and their R2 values. The 15 explanatory models are generated based on the results of 10,000 simulation instances, 
each with the corresponding testbed. The result shows that, among the 6 factors, the average of the public’s initial opinion values ( O1 ) 
dominates the rest in terms of the permutation importance

Basis R
2 Permutation Importance of Opinion Model Factors

O1 O2 O3 O4 O5 O6

Testbed 1 0.8082 0.8453 0.0622 0.0232 0.0107 0.0091 0.0496

Testbed 2 0.8491 0.8477 0.0024 0.0485 0.0027 0.0007 0.0980

Testbed 3 0.8490 0.7972 0.0304 0.0307 0.0137 0.0070 0.1209

Testbed 4 0.7969 0.8970 0.0024 0.0308 0.0034 0.0014 0.0650

Testbed 5 0.8831 0.8699 0.0030 0.0495 0.0043 0.0007 0.0726

Testbed 6 0.9573 0.9046 0.0006 0.0312 0.0100 0.0002 0.0535

Testbed 7 0.8233 0.9351 0.0406 0.0067 0.0043 0.0016 0.0118

Testbed 8 0.7931 0.7609 0.0230 0.0198 0.0029 0.0023 0.1912

Testbed 9 0.8720 0.7834 0.0338 0.0595 0.0289 0.0081 0.0863

Testbed 10 0.9898 0.9429 0.0087 0.0028 0.0010 0.0001 0.0445

Testbed 11 0.9786 0.9665 0.0029 0.0085 0.0011 0.0002 0.0207

Testbed 12 0.8548 0.8751 0.0761 0.0095 0.0086 0.0074 0.0233

Testbed 13 0.8483 0.8215 0.0047 0.0277 0.0061 0.0022 0.1378

Testbed 14 0.9670 0.8581 0.0003 0.0535 0.0056 0.0003 0.0821

Testbed 15 0.7698 0.6967 0.0285 0.1091 0.0350 0.0143 0.1163
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Further analysis with partial dependencies
This section explores partial dependence plots of factors 
in 15 different scenarios and explains the marginal effects 
of individual factors or pairs of factors on disease spread 
outcomes. We have clustered the 15 cases into three 
groups using the K-means algorithm on partial depend-
ence vectors. Each of Figs. 6, 7 and 8 consists of partial 
dependence plots of models in one of the three groups, 
respectively. Since the mean of initial opinions on inter-
vention ( O1 ) has a dominant impact on the response 
variable, one-way partial dependence plots of O1 are pre-
sented in the first columns. Two-way partial dependence 
plots for ( O1 , Oj ) pairs with j ∈ 2, . . . , 6 in Figs. 6, 7 and 8 
are shown in following columns and explained below.

Plots of the first columns of Figs.  6, 7 and 8 present 
the impact of O1 , which represents the mean of initial 
opinions regarding intervention. The downward right 
patterns in the plots show that a higher value of O1 , or 
citizens’ cooperation in preventive intervention at t = 0 , 
is advantageous in disease mitigation. Also, contour 
lines are vertical or have steep slopes in all the two-way 
partial dependence plots, indicating that the change in 
epidemic size is driven by O1 compared to the other fac-
tors in each plot.

The variance of initial opinions on intervention ( O2 in 
the second columns of Figs. 6, 7 and 8) has a negligible 

effect on total new infection ( YC ), except for the results 
baes on Testbeds 10 and 11. For the two cases, contour 
lines are bending to the right, indicating that a higher 
variance ( O2 ) leads to increased YC when O1 is high. 
Higher variance ( O2 ) under the same average ( O1 ) indi-
cates a greater presence of individuals with extreme opin-
ions on both the anti-intervention and pro-intervention 
sides. The pattern in both models suggests that having 
more people who initially detest the preventive interven-
tions can undermine disease mitigation efforts and the 
increased number of people who advocate the interven-
tion cannot offset the effect.

Next, the mean of the usage for the pro-intervention 
channel ( O3 ) shows contour lines bent to the left. This 
pattern suggests that having more news audience for the 
pro-intervention channel (or high O3 ) is advantageous to 
disease mitigation. The curves are rather vertical given 
high O1 , indicating that the importance of O3 diminishes 
if a pro-intervention public consensus exists. In a real-
world scenario, securing more channels to advocate for 
pro-intervention measures would resemble the condi-
tions associated with a high value of O3.

The variance of the usage for the pro-intervention 
channel ( O4 ), related to news audience polarization, 
exhibits right-bent patterns in Group 1 models when 
O1 > 0.5 , while showing vertical contour lines otherwise. 

Fig. 6 One one-way ( O1 ) and five two-way partial dependence plots of the regression model for the cases in Group 1: Results based on Testbeds 4, 
5, 6, 10, 11, and 14
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In Group 1 cases, a high O4 tends to increase YC when 
O1 is high in the corresponding partial dependence plots. 
That is, higher news audience polarization can lead to a 
greater number of total infections, as warned by existing 
studies [32, 35, 40], but only when O1 is sufficiently high.

The opinion network’s homophily level ( O5 ) primar-
ily results in vertical contour lines, indicating that it has 
a marginal effect on disease spread in our model where 
media channels drive opinion dynamics.

The response time of media channels to disease spread 
( O6 ) displays clear right-bent patterns in the contour 
lines of Groups 1 and 3. This shows that media channels’ 
early reaction to disease spread (characterized by low O6 ) 
decreases the total damage caused by epidemics, in gen-
eral. For models in Group 2, this pattern is less evident. 
The fitted parameters of Group 2 models commonly 
show a weak pro-intervention message with high uncer-
tainty, along with either low average opinion over time 

Fig. 7 One one-way ( O1 ) and five two-way partial dependence plots of the regression model for the cases in Group 2: Results based on Testbeds 1, 
3, 8, 9, 12, and 15

Fig. 8 One one-way ( O1 ) and five two-way partial dependence plots of the regression model for the cases in Group 3: Results based on Testbeds 2, 
7, and 13



Page 14 of 16Yu et al. BMC Public Health          (2024) 24:863 

(Testbeds 1, 3, 8, 9, and 12) or early convergence (15). 
These characteristics weaken the impact of pro-interven-
tion messages, consequently diminishing the significance 
of media channels’ early response to disease.

Conclusion
During the recent SARS-CoV-2 pandemic, understanding 
the dynamics of public opinion emerged as a key aspect 
of safeguarding public health. This study aims to shed 
light on aspects of the pandemic related to public opinion 
through an agent-based simulation framework. We devel-
oped an agent-based model that integrates disease spread 
and opinion dynamics, based on the assumption that all 
mass media can be represented as two opposing channels 
influencing opinion dynamics. Using this model, we rep-
licated the coevolution of opinion and disease dynamics 
observed during the COVID-19 pandemic in 15 different 
countries and demonstrated the importance of opinion-
related factors in public health and disease mitigation. 
Our work, therefore, underscores the practical utility and 
necessity of tracking public opinion and social behaviors 
to prepare for future disease spread. Our approach also 
incorporates the aspects of opinion dynamics, such as 
polarization in media consumption and homophilic net-
work structures in opinion sharing. Despite the accumu-
lating academic attention to social phenomena such as 
polarized media consumption and opinion clusters with 
misinformation, academic trials to explain how much 
they accelerated the disease spread were relatively scares. 
Our attempt adds to another possibility of quantifying 
the contribution of concerned social phenomena to the 
spread of disease.

Our result shows that the mean of people’s opinions 
in the initial stage outweighs all other factors. This find-
ing aligns with the significance of early action and pre-
paredness for disease spread, as emphasized in multiple 
existing research articles [25, 29], indicating that epi-
demics are easier to mitigate when the infectious popu-
lation is still relatively small. The importance of public 
consensus on how to respond to epidemics also implies 
the need to strengthen trust in health recommendations 
based on science. Achieving this goal may require general 
health education regarding potential future epidemics, 
as demonstrated in previous epidemics such as acquired 
immune deficiency syndrome (AIDS) [19]. Building on 
our results, we offer additional advice for health authori-
ties to maintain a consistent level of health education 
about infectious diseases for the general public. This is 
particularly crucial in the current context, where peo-
ple still remember the damage caused by COVID-19 
and recognize the importance of collective efforts, such 
as complying with non-pharmaceutical interventions, in 
mitigating the disease. Maintaining the social norm of 

adhering to scientific health recommendations through 
education should be considered a crucial aspect of infec-
tious disease preparedness and thus needs authorities’ 
consistent attention and investment.

Our study also reveals that other opinion-related fac-
tors can have a significant impact on epidemics depend-
ing on the mean of public opinions in the initial stage. 
The results suggest that increasing the audience for 
channels supporting pro-intervention messages, reduc-
ing news audience polarization, and ensuring immediate 
media responses to potential diseases could significantly 
help mitigate disease spread. These findings emphasize 
the need for media channels and information-related 
authorities to deliver accurate information and persuade 
community members to cooperate with their policies 
[56]. Attempts to politicize or polarize public health and 
epidemic issues may undermine our efforts to mitigate 
the spread of diseases.

The insights from our study are based on multiple 
problem simplifications and assumptions, inviting ongo-
ing discussion and further research. Our model relies on 
the RA framework and specific assumptions about media 
dynamics. Furthermore, our results require additional 
country-specific details to be employed as a predictive 
model for each country. Additionally, while we assume 
independence among the tested opinion-related factors, 
real-world correlations may differ. Our model does not 
distinguish between different levels of disease severity 
and does not include death [68]. We expect that incor-
porating these details into the model using data will yield 
more meaningful results for policymakers in our future 
study.

Designing and deploying effective opinion interven-
tions (e.g., advertisements and campaigns) during an 
ongoing pandemic is a complex problem, particularly 
when considering the challenges of countering the spread 
of misinformation and fear. In our future work, we aim to 
suggest efficient opinion intervention policies for disease 
control by incorporating deeper understandings of peo-
ple’s behavior from the perspectives of social psychology 
and media studies.
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