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Abstract
Background Previous studies have shown the association between tuberculosis (TB) and meteorological factors/air 
pollutants. However, little information is available for people living with HIV/AIDS (PLWHA), who are highly susceptible 
to TB.

Method Data regarding TB cases in PLWHA from 2014 to2020 were collected from the HIV antiviral therapy cohort 
in Guangxi, China. Meteorological and air pollutants data for the same period were obtained from the China 
Meteorological Science Data Sharing Service Network and Department of Ecology and Environment of Guangxi. A 
distribution lag non-linear model (DLNM) was used to evaluate the effects of meteorological factors and air pollutant 
exposure on the risk of TB in PLWHA.

Results A total of 2087 new or re-active TB cases were collected, which had a significant seasonal and periodic 
distribution. Compared with the median values, the maximum cumulative relative risk (RR) for TB in PLWHA was 
0.663 (95% confidence interval [CI]: 0.507–0.866, lag 4 weeks) for a 5-unit increase in temperature, and 1.478 (95% CI: 
1.116–1.957, lag 4 weeks) for a 2-unit increase in precipitation. However, neither wind speed nor PM10 had a significant 
cumulative lag effect. Extreme analysis demonstrated that the hot effect (RR = 0.638, 95%CI: 0.425–0.958, lag 4 weeks), 
the rainy effect (RR = 0.285, 95%CI: 0.135–0.599, lag 4 weeks), and the rainless effect (RR = 0.552, 95%CI: 0.322–0.947, lag 
4 weeks) reduced the risk of TB. Furthermore, in the CD4(+) T cells < 200 cells/µL subgroup, temperature, precipitation, 
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Background
Tuberculosis (TB) is a chronic airborne infectious dis-
ease that can cause damage to organs throughout the 
body, with pulmonary TB being the most common form 
[1]. There were an estimated 10.6 million cases of TB and 
approximately 1.6 million deaths attributed to TB in 2021 
[2]. There are some few known risk factors that influ-
ence the development of TB disease, including diabetes, 
alcohol consumption, and drugs abuse [3]. Furthermore, 
meteorological conditions and air pollution may have a 
delayed and cumulative effect on the incidence of TB [4]. 
Previous studies have revealed that precipitation, temper-
ature, PM2.5, PM10, SO2, O3, and CO may have a signifi-
cant impact on TB prevalence [4–6]. PM2.5 and PM10 can 
carry Mycobacterium tuberculosis (MTB) into the lungs 
through inhalation, increasing the risk of MTB infec-
tion or worsening existing cases [6]. Gaseous pollutants, 
including SO2, O3, CO, and others, also indirectly con-
tribute to the prevalence of TB by impairing lung health 
and weakening immune defences against MTB infection 
[7]. Therefore, exposure to high levels of these air pollut-
ants would make it easier for a person to become infected 
with TB or would worsen existing TB. The incidence of 
TB also can be influenced by precipitation and tempera-
ture through modulation of the human immune response 
or change of human behavior [8, 9]. However, due to the 
differences in data quality, city-specific characteristics, 
and nations and populations, the effects of meteorologi-
cal factors and air pollutants remain controversial [5, 7, 
10–13].

People living with HIV/AIDS (PLWHA) are par-
ticularly vulnerable to developing TB owing to their 
weakened immune system [14]. TB accounts for approxi-
mately one-third of AIDS-related deaths globally, placing 
it as a leading cause of HIV-associated hospitalisation 
and mortality among PLWHA [15]. It is estimated that 
187,000 PLWHA died from TB in 2021 [2]. As a result, 
HIV/TB coinfection has raised challenges for programme 
management and treatment around the world. At pres-
ent, research on risk factors for TB in PLWHA mainly 
focuses on pathogens and host immunity [16, 17]. Lim-
ited attention has been paid to the cumulative effects of 
meteorological conditions and air pollution. Besides, the 
high susceptibility of PLWHA to TB can provide better 

research conditions to decipher the effects of meteoro-
logical factors and pollutants on TB incidence.

China is one of the top 30 countries regarding the 
burden of HIV/TB coinfection, and its annual TB inci-
dence is the third highest in the world [18]. The Guangxi 
Zhuang Autonomous Region (Guangxi), a border prov-
ince located in south-western China, has one of the high-
est burdens of HIV/TB coinfection in China [19, 20]. 
Guangxi is dominated by a subtropical monsoon climate 
with abundant heat and and precipitation, which pro-
vides favourable conditions for some bacterial and fungal 
pathogens, such as MTB [21] and Talaromyces marneffei 
[22]. Therefore, Guangxi is appropriate location to study 
of the correlation between meteorological factors and 
HIV/TB coinfection in a subtropical area.

To quantitatively assess the impact of meteorological 
conditions and air pollution on TB incidence, previous 
studies have commonly utilized a distributed lag non-
linear model (DLNM) to evaluate the cumulative effects 
of exposure on the outcome incidence [5, 7, 10, 23]. 
However, limited research has been conducted on TB 
co-infected with HIV. A DLNM provides a framework 
that can be applied to describe the connections in time-
series data that possibly have non-linear and delayed 
effects [24]. In this study, we used a DLNM to analyse the 
delayed and cumulative effects of meteorological factors 
and air pollutants on the incidence of TB among PLWHA 
in the subtropical areas of Guangxi. These findings will 
hopefully provide a reference for early warning and con-
trol of HIV/TB coinfection in this region.

Materials and methods
Research location
The Guangxi Zhuang Autonomous Region, a province 
including 14 cities, is located in south-western China. 
A total active temperature for the daily mean tempera-
tures > 10  °C serves as the indicator to determine the 
demarcation line of a climatic zone, while the 6900℃ iso-
therm serves as the demarcation line between the south 
subtropic and middle subtropic [25, 26]. This study was 
conducted in nine cities: Nanning, Wuzhou, Chongzuo, 
Laibin, Yulin, Baise, Qinzhou, Fang Chenggang, and Gui-
gang. Each city has a subtropical monsoon climate, with 
four distinct seasons, including a mild and wet winter, 
and a hot and rainy summer.

and PM10 had a significant hysteretic effect on TB incidence, while temperature and precipitation had a significant 
cumulative lag effect. However, these effects were not observed in the CD4(+) T cells ≥ 200 cells/µL subgroup.

Conclusion For PLWHA in subtropical Guangxi, temperature and precipitation had a significant cumulative effect on 
TB incidence among PLWHA, while air pollutants had little effect. Moreover, the influence of meteorological factors on 
the incidence of TB also depends on the immune status of PLWHA.

Keywords DLNM, Tuberculosis, HIV/AIDS, Meteorological factors, Air Pollutant
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Data sources
The data on the incidence of TB cases in PLWHA 
from2014to 2020 were collected from the HIV antiviral 
therapy cohort in subtropical areas of southern Guangxi, 
China. This study included 2087 new and re-active cases.

The meteorological data came from The China Meteo-
rological Science Data Sharing Service Network (https://
data.cma.cn/), including temperature (°C), wind speed 
(m/s), precipitation (mm), sunshine duration (h), and 
relative humidity (%). The atmospheric environment 
monitoring data came from the data center of the official 
website of the Department of Ecology and Environment 
of Guangxi Zhuang Autonomous Region (http://sthjt.
gxzf.gov.cn/), including CO (mg/m3), O3 (µg/m3), NO2 
(µg/m3), PM2.5 (µg/m3), and PM10 (µg/m3).

Statistical analysis
Spearman correlation analysis was used to select the per-
tinent TB variables; the absolute correlation coefficient 
for relevant variables should be < 0.7 to minimise the col-
linearity issue [27]. Then characteristics of TB cases in 
PLWHA and the distribution of relevant meteorological 
factors and air pollutants are described as the median and 
interquartile range (IQR). A two-tailed P-value < 0.05 was 
considered to indicate a statistically significant difference.

The Kolmogorov-Smirnov test showed that the cases 
of TB among PLWHA approximately followed a Pois-
son distribution (data not shown). Therefore, based on 
a generalised additive model (GAM), the nonlinear rela-
tionship between the meteorological factors and air pol-
lutants and the incidence of TB in PLWHA as well as the 
lag-response effect were analysed by using the cross-basis 
function [24]. A natural cubic spline (ns) function was 
used to control the other meteorological factors, air pol-
lutants, and long-term trends [28]. The “week” variable 
(from 1 to 366 weeks) was used to regulate long-term 
trends and seasonal fluctuations. The meteorological fac-
tors and air pollutants were averaged on a weekly basis 
and then included in the model [29, 30]. Wind speed, 
temperature, precipitation, and PM10 were controlled by 
the ns function with three degrees of freedom [7, 10, 27].

Therefore, we employed a GAM based on “Quasipois-
son” distribution to fit the overall effects of exposure, 
response, and lag effects [10, 31]. Using the natural cubic 
spline function as the basis function, air pollution and 
meteorological data were incorporated into the model. 
The DLNM model formula is as follows (taking tempera-
ture as an example):

 Y _t ∼ quasiPosisson(µ_t)

 
Log(µ_t) = α + βP_(t, l) + ns (time,df0) + ns (windspeed, df1)

+ns (precipitation, df2) + ns (PM10, df4)

In this equation, Y_t is the number of cases in week “t”, 
α is the intercept, β is the coefficient of P_(t. l), P_(t. l)is 
the temperature cross-basis matrix, “l” is lagging weeks, 
“ns” is the natural cubic spline function, and “df” is the 
degree of freedom. The “time” variable was used to con-
trol the long-term trend. The “df0” and lag weeks in the 
model were determined according to the Akaike infor-
mation criterion (AIC). All mereological factors and air 
pollutants were controlled by “ns” function with three 
degrees of freedom [7, 32, 33]. Finally, a sensitivity analy-
sis was carried out to test the stability of the results when 
changing the degrees of freedom of the time variable in 
the model.

Results
Characteristics of TB cases in PLWHA
The characteristics of all TB cases in PLWHA, meteoro-
logic factors, and air pollution were shown in Table 1. A 
total of 2087 TB cases in PLWHA (males: 1699 [81.41%], 
females: 388 [18.59%]) were recorded in the Guangxi 
cohort of HIV antiviral therapy from 2014 to 2020. The 
median age was 48.55 years (IQR): 37.86–60.37 years); 
the median CD4(+) T-cell count was 68.00 cells/µL (IQR: 
22.00-186.00 cells/µL); the median CD8(+) T-cell count 
was 546.00 cells/µL (IQR: 305.00-907.00 cells/µL); the 
median height was 163.96 cm (IQR: 160.00–168.00 cm); 
the median weight was 52.00  kg (IQR: 47.00–58.00  kg). 
The median and reference range of temperature, wind 
speed, precipitation, concentration of PM10 were 23.64 
℃ (IQR: 16.79–27.65 ℃), 1.85 m/s (IQR: 1.64–2.06 m/s), 
3.30  mm (IQR: 1.24–7.11  mm), and 54.07  µg/m³ (IQR: 
40.82–74.25 µg/m³), respectively.

The correlation between TB cases, meteorological factors, 
and air pollutants
In the time-series analysis, the TB cases, meteorological 
factors, and air pollutants had similar periodicity (Fig. 1). 
The variables related to the TB cases with correlation 
coefficients less than 0.7 with other factors were selected, 
and ultimately, 3 meteorological variables (i.e., tempera-
ture, wind speed, precipitation) and 1 air pollutant (i.e., 
PM10) were included in the DLNM for analysis.

To screen out the relevant variables for DLNM, Spear-
man correlation analysis was used to reveal a significant 
association between the cases and meteorological fac-
tors/air pollutants. CO, O3, NO2, PM2.5, sunshine dura-
tion, and relative humidity did not exhibit a significant 
correlation (P > 0.05) and thus were excluded from the 
model (Table S1). Considering that multicollinearity 
may affect the model’s stability [10], only the TB-related 
variables with a correlation coefficient to each variable 
of < 0.7 were included in the model. Thus, tempera-
ture (r = 0.234), wind speed (r = -0.292), precipitation 
(r = 0.157), and PM10 (r = 0.143) were incorporated in the 

https://data.cma.cn/
https://data.cma.cn/
http://sthjt.gxzf.gov.cn/
http://sthjt.gxzf.gov.cn/
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DLNM(Table S1, P < 0.05). Among these variables, PM10 
was positively correlated with TB and negatively corre-
lated with the other variables (P < 0.01); wind speed was 
negatively correlated with TB and the other variables 
(P < 0.01); precipitation was positively correlated with TB 
and temperature (P < 0.01); and temperature was posi-
tively correlated with TB (P < 0.01).

The effects of meteorological factors and air pollutant 
exposure on the risk of TB in PLWHA
The lag times in the model were determined based on the 
AIC: a lag of 4 weeks for both temperature and precipi-
tation, a lag of 3 weeks for wind speed, and a lag of 12 
weeks for PM10. The overall exposure-response effects 
of meteorological factors and air pollutant exposure on 
TB risk in PLWHA were shown in Fig.  2. As tempera-
ture and precipitation increased, the relative risk (RR) 
showed a unimodal distribution, meaning that the risk 
of TB increased as both temperature and precipitation 
increased, and then decreased after they reached the 
peak. The RR distribution of PM10 was bimodal, with two 
peak points. The associations between meteorological 

factors and the lag time (in weeks) with the risk of TB 
in PLWHA were shown from two and three-dimen-
sional perspectives in Figs. 3 and 4, respectively. To fur-
ther explain the relationship between TB and the unit 
increase in the factors, compared with the medians, the 
cumulative RR of TB in PLWHA was calculated with the 
model (Table 2; Fig. 5). With a 5-unit increase in temper-
ature, the cumulative RR was 0.663 (95% CI: 0.507–0.866, 
lag 4 weeks); with a 2-unit increase in precipitation, the 
RR of lag-response effect was 1.152 (95% CI: 1.052–1.260, 
lag 3 weeks), and the cumulative RR was 1.478 (95% CI: 
1.116–1.957, lag 4 weeks). However, PM10 and wind 
speed had no significant effect on TB (P > 0.05). Strati-
fied analysis was performed according to the CD4(+) T 
cells count [34–36] (shown in Tables 3 and 4; Fig. 6). In 
the CD4(+) T cells < 200 cells/µL subgroup, temperature 
(RR = 0.886, 95%CI: 0.794–0.987, lag 3 weeks), precipita-
tion (RR = 1.167, 95%CI:1.058–1.287, lag 2 weeks), and 
PM10 (RR = 1.061, 95%CI:1.002–1.124, lag 7 weeks) had 
significant lag-response effects. Moreover, temperature 
(RR = 0.612, 95%CI: 0.457–0.819, lag 4 weeks) and pre-
cipitation (RR = 1.498, 95%CI: 1.105–2.032, lag 4 weeks) 

Fig. 1 Time series of TB cases, meteorological factors (temperature, wind speed, precipitation, sunshine duration, and relative humidity) (A), and air pol-
lutants (CO, O3, NO2, PM2.5, and PM10) (B) in subtropical Guangxi, China, from 2014 to 2020
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had the significant cumulative lag-response effects. In the 
CD4(+) T cells ≥ 200 cells/µL subgroup, there was no sig-
nificant difference in either the lag-response effect or the 
cumulative effect.

Extreme effect analysis of meteorological factors and air 
pollutants
The 99th and 1st percentiles were assigned as the extreme 
effect values for the meteorological factors and air pollut-
ants; the extreme effect analysis results were presented 
in Table  5. The hot effect (99th vs. median, cumulative 
RR = 0.638, 95%CI: 0.425–0.958, lag 4 weeks), the rainy 
effect (99th vs. median, cumulative RR = 0.285, 95%CI: 
0.135–0.599, lag 4 weeks), and rainless effect (1st vs. 

median, cumulative RR = 0.552, 95%CI: 0.322–0.947, lag 
4 weeks) significantly reduced the risk of TB in PLWHA, 
but the extreme effects of the cold effect, wind speed, and 
PM10 were not significant (Table 5).

Sensitivity analysis
Sensitivity analysis demonstrated that varying the 
degrees of freedom for a long-term trend of different fac-
tors in the DLNM did not lead to significant changes in 
the results, indicating that the findings are robust (Tables 
S2-S6).

Fig. 2 The overall exposure-response impact of temperature (A), wind speed (B), precipitation (C), and PM10 (D) on TB risk in PLWHA
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Discussion
HIV/TB co-infection remains a major public health 
challenge in China and throughout the world. With the 
development of bioinformatics methods and mathemati-
cal models, an increasing amount of research has been 
devoted to quantifying the impact of meteorological con-
ditions on TB infection [5], but no relevant studies have 
been conducted in PLWHA. We applied a DLNM for the 
first time to investigate the association between environ-
mental factors and TB incidence in PLWHA, who are 
susceptible to MTB infection. The findings suggest that 
meteorological conditions (including temperature and 
precipitation) as well as air pollutant (including PM10) 
may have a significant lag or cumulative impact on the 
TB incidence in PLWHA.

The results indicated that an increase in temperature 
may reduce the risk of TB in PLWHA, which is consis-
tent with some previous studies [37–39]. A study con-
ducted in Mexico indicated that TB has seasonality, 
with the highest incidence occurring during spring and 
summer seasons [40]. Rao et al. suggested that a 10 ℃ 

increase in temperature is associated with a 9% decrease 
in TB morbidity [41]. Therefore, temperature is con-
sidered a crucial influential factor in the context of TB. 
The biological mechanisms underlying the association 
between temperature and TB are complex. Increased 
temperatures have the potential to induce alterations in 
human behaviours [9]. Individuals tend to stay indoors 
within air-conditioned environment in high-temperature 
weather, thereby reducing the risk of close contact with 
TB patients [39]. Moreover, the host immune system may 
also be affected by lower temperatures [38]. Vitamin D 
deficiency is commonly observed during winter, which 
can potentially weaken immune function [42]. Therefore, 
elevated temperatures confer partical protection against 
TB, and it is interesting and noteworthy that meteorolog-
ical factors may affect the host’s immune status, poten-
tially establishing a correlation with TB. However, in 
our study, the cold effect was not statistically significant, 
possibly attributed to the relatively weak impact of cold 
weather in the subtropical region of Guangxi due to its 
warm climate, resulting in statistical insignificance.

Fig. 3 Contour plot of the effects of temperature (A), wind speed (B), precipitation (C), and PM10 (D)
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The results also suggest that increased precipitation 
may increase the risk of TB in PLWHA, whereas rainy or 
rainless has the opposite effect. Increased precipitation 
could broaden the habitat range of MTB [43], and moist 
air facilitates the survival and reproduction of MTB 
[44]. Additionally, the rainless effect may exert a protec-
tive effect by inducing aridity in the environment, while 
inclement weather diminishes outdoor activities and 
consequently reduces the risk of transmission through 
direct interpersonal contact [45].

In the present study, there was no significant asso-
ciation between wind speed, PM10, and TB incidence 
in PLWHA. A few previous studies have indicated that 
increased wind speed could accelerate the spread of MTB 

[46] and change the distribution of air pollutants [47]. 
However, another studies showed that the wind reduced 
the TB risk because it dilutes the concentration of bacte-
ria and air pollutants [48]. A study indicated that PM10 
had an indirect impact on the incidence of TB, displaying 
a positive correlation with TB occurrence [7]. PM10 expo-
sure causes the senescence of respiratory epithelial cells, 
reduces the expression of HBD-2 and HBD-3, and pro-
motes the development of TB [49]. In other studies, there 
was no association between increased PM10 and TB 
incidence [11, 13], which consistent with our research. 
For one thing, the industrial development in Guangxi 
remains inadequate; thus, the air quality is commend-
able. For another thing, the association between PM10 

Fig. 4 3D graph of the effects of temperature(A), wind speed (B), precipitation (C), and PM10 (D)
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and TB incidence depends on the PM10 concentration. 
Wang et al. [7] revealed a significant association between 
the two, but the median PM10 concentration in that study 
(139.00  µg/m³) was 2.57 times higher than the present 
study (54.07 µg/m³). A study conducted in South Korea 
[13] reported a similar concentration (63.50 µg/m³) as the 
present study, and those authors also did not establish a 
significant correlation between PM10 and TB incidence.

The factors of relative humidity, sunshine duration, O3 
etc. were excluded from the model analysis in our study 
due to their lack of association with TB incidence in 
PLWHA. Some relevant literatures have reported signifi-
cant delayed cumulative effects of relative humidity [38], 
sunshine duration [50], and O3 [51] on the incidence of 
TB. However, other studies have found that these meteo-
rological factors and air pollutants do not have a signifi-
cant impact on the incidence of TB [5, 33, 52]. Therefore, 
variations in data quality, region specific characteristics, 
and populations contribute to differences in the effects 
observed [5, 7].

Climate change impacts TB through various pathways, 
alterations in climatic factors such as temperature and 
precipitation influence the host immune responses by 
modifying the distribution of vitamin D, Ultraviolet (UV) 
radiation exposure, and other risk factors [8]. Interest-
ingly, we found the influence of meteorological factors 
on the TB incidence related with the immune status of 
PLWHA. A CD4(+) T cell count below 200 cells/µL indi-
cates a diagnosis of AIDS after HIV infection [53], signi-
fying severe impairment of the immune system [54]. In 
the present study, we found that patients with compro-
mised immune system were more sensitive to the effects 
on climate change and air pollutants. Alterations in mete-
orological factors can impact the susceptibility to TB by 
modulating the host immune response. An increase in 
precipitation results in a humid surrounding environ-
ment and a reduction in UV radiation. UV radiation 
serves as the primary source of Vitamin D, which exhib-
its immunostimulatory and immunosuppressive effects 
associated with anti-mycobacterial responses in humans 
[55]. The deficiency of Vitamin D is correlated with an 

Table 2 Distribution lag non-linear model results of TB cases with different meteorological factors and pollutant (Lag-response; Lag-
response of incremental cumulative effects)
Lag
(weeks)

Temperature Wind speed Precipitation PM10

Lag-responsea Lag-
response 
cumulative 
effectsa

Lag-responseb Lag-
response 
cumulative 
effectsb

Lag-responsec Lag-
response 
cumulative 
effectsc

Lag-responsed Lag-response 
cumulative 
effectsd

0 0.952(0.762, 
1.190)

0.952(0.762, 
1.190)

1.050(0.905, 
1.218)

1.050(0.905, 
1.218)

1.020(0.913, 
1.140)

1.020(0.913, 
1.140)

1.007(0.939, 1.080) 1.007(0.939, 1.080)

1 0.940(0.836, 
1.058)

0.895(0.671, 
1.195)

0.967(0.860, 
1.087)

1.015(0.816, 
1.262)

1.109(1.027, 
1.197)*

1.131(0.958, 
1.336)

1.014(0.956, 1.076) 1.021(0.898, 1.161)

2 0.925(0.791, 
1.083)

0.829(0.603, 
1.140)

0.948(0.843, 
1.067)

0.962(0.720, 
1.287)

1.152(1.052, 
1.260)*

1.303(1.051, 
1.616)*

1.021(0.968, 1.076) 1.042(0.872, 1.246)

3 0.906(0.820, 
1.000)

0.750(0.544, 
1.035)

0.990(0.859, 
1.140)

0.953(0.670, 
1.355)

1.110(1.031, 
1.195)*

1.446(1.120, 
1.867)*

1.027(0.976, 1.081) 1.071(0.857, 1.338)

4 0.883(0.730, 
1.068)

0.663(0.507, 
0.866)*

1.022(0.927, 
1.127)

1.478(1.116, 
1.957)*

1.032(0.980, 1.087) 1.105(0.848, 1.440)

5 1.036(0.982, 1.093) 1.145(0.843, 1.556)
6 1.038(0.983, 1.096) 1.188(0.838, 1.684)
7 1.037(0.984, 1.094) 1.233(0.834, 1.822)
8 1.035(0.985, 1.088) 1.276(0.829, 1.964)
9 1.032(0.985, 1.081) 1.316(0.824, 2.103)
10 1.027(0.980, 1.076) 1.352(0.818, 2.234)
11 1.021(0.970, 1.076) 1.381(0.810, 2.354)
12 1.016(0.955, 1.080) 1.403(0.797, 2.467)
Note: Relative risk (RR) with 95% confidence interval (CI) was used to describe the effect of the meteorological factors and pollutant factors in different subgroups. 
*P < 0.05

a The model is based on a maximum lag of 4 weeks, which was adjusted for long-term trend, wind speed, precipitation, and PM10. The Lag-response is for a 5-unit 
increase of temperature in the model

b The model is based on a maximum lag of 3 weeks, which was adjusted for long-term trend, mean temperature, precipitation, and PM10. The Lag-response is for a 
0.5-unit increase of wind speed in the model

c The model is based on a maximum lag of 4 weeks, which was adjusted for long-term trend, mean temperature, wind speed, and PM10. The Lag-response is for a 
2-unit increase of wind precipitation in the model

d The model is based on a maximum lag of 12 weeks, which was adjusted for long-term trend, mean temperature, wind speed, and precipitation. The Lag-response 
is for a 15-unit increase of wind PM10 in the model
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Fig. 5 Lag-specific response effects for a unit increase in different factors (A); cumulative effects for lag-response incremental cumulative effects for a unit 
increase in different factors (B). In the model, a 5-unit increase for temperature, a 0.5-unit increase for wind speed, a 2-unit increase for precipitation, and 
a 15-unit increase for PM10 were used to calculate the relative risk of TB in PLWHA
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Fig. 6 Summary of the overall cumulative association between TB incidence in people living with HIV/AIDS (PLWHA) and meteorological factors (tem-
perature, wind speed, and precipitation) and air pollutants (PM10) in different subgroup, stratified by the CD4(+) T cell count
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elevated susceptibility to TB [56]. Vitamin D deficiency is 
more prevalent among PLWHA, because it is correlated 
with compromised immune responses in PLWHA [57]. 
Therefore, PLWHA is more sensitive to climate fluctua-
tions in TB incidence than the general population, partic-
ularly among those with severe immune dysfunction. The 
findings highlight the importance of seasonal preventive 
measures to control TB infection in PLWHA, particularly 
those experiencing severe immunodeficiency.

Elevated levels of air pollutants are associated with 
impaired lung function due to oxidative stress, which 
may cause airway inflammation, inhibit the macrophage 
function, and increase susceptibility to MTB [58, 59]. 
And HIV impairs the host immune defense against MTB 
infection and impairs phagocytosis of MTB by macro-
phage [59], thus PLWHA are more likely to develop TB 
than general individuals. Furthermore, we found a sig-
nificant detrimental impact of PM10 in PLWHA with 
severe immunodeficiency in present study. Therefore, it 
is reasonable to speculate that pollutants are more likely 
to induce an increased susceptibility and risk of TB mor-
bility in individuals with severe immunodeficiency.

There are some limitations in our study. Firstly, the 
model was fitted using the average levels of weather, pol-
lutants, and TB cases in nine cities in Guangxi province, 
which enhanced the overall stability of the model but 
impacted the estimation of the extreme effects. Secondly, 

given the ecological nature of this study, it is impossible 
to establish the relationship between the exposure and 
the effect at the individual level, and the ecological fal-
lacy is inevitable. Therefore, this study mainly provides 
evidence for the associations between TB incidence, 
meteorological factors, and air pollutants in PLWHA, but 
it lacks evidence of causal inference.

Conclusion
This study demonstrated the significant cumulative lag-
response effects of temperature and precipitation on 
TB risk in PLWHA. Moreover, the hot, rainyt, and rain-
less effects are associated with a decreased TB risk in 
PLWHA. Additionally, the impact of meteorological fac-
tors on TB incidence is contingent upon the immunolog-
ical status of PLWHA.

Abbreviations
AIC  Akaike information criterion
CI  Confidence interval
DLNM  Distribution lag non-linear model
IQR  Interquartile range
PLWHA  People living with HIV/AIDS
TB  Tuberculosis
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Table 5 Extreme effect analysis of different factors from 2014 to 2020
Lag
(weeks)

Temperature Wind speed precipitation PM10

Hot effect Cold effect Windy effect Windless 
effect

Rainy effect Rainless effect High-PM10 effect Low-PM10 effect

0 0.948(0.705, 
1.275)

1.273(0.874, 
1.855)

1.263(0.812, 
1.965)

1.112(0.795, 
1.555)

0.741(0.565, 
0.973)*

0.901(0.719, 
1.129)

0.789(0.580, 1.072) 0.915(0.717, 1.168)

1 0.877(0.596, 
1.289)

1.201(0.734, 
1.965)

1.097(0.580, 
2.075)

0.949(0.577, 
1.561)

0.586(0.391, 
0.878)*

0.820(0.589, 
1.140)

0.649(0.370, 1.138) 0.820(0.531, 1.267)

2 0.795(0.520, 
1.216)

0.939(0.542, 
1.626)

0.842(0.359, 
1.979)

0.834(0.431, 
1.614)

0.478(0.286, 
0.798)*

0.742(0.494, 
1.117)

0.556(0.256, 1.206) 0.721(0.402, 1.293)

3 0.714(0.461, 
1.107)

0.732(0.412, 
1.302)

0.736(0.261, 
2.075)

1.015(0.475, 
2.167)

0.380(0.203, 
0.710)*

0.654(0.406, 
1.053)

0.495(0.190, 1.292) 0.624(0.307, 1.269)

4 0.638(0.425, 
0.958)*

0.637(0.366, 
1.110)

0.285(0.135, 
0.599)*

0.552(0.322, 
0.947)*

0.457(0.148, 1.411) 0.535(0.233, 1.226)

5 0.434(0.119, 1.583) 0.458(0.176, 1.194)
6 0.424(0.098, 1.826) 0.396(0.132, 1.192)
7 0.421(0.082, 2.15) 0.350(0.100, 1.229)
8 0.424(0.070, 2.562) 0.319(0.077, 1.315)
9 0.430(0.060, 3.064) 0.302(0.062, 1.462)
10 0.439(0.053, 3.667) 0.299(0.053, 1.697)
11 0.449(0.046, 4.400) 0.312(0.047, 2.078)
12 0.460(0.040, 5.336) 0.342(0.043, 2.715)
Note: Relative risk (RR) with 95% confidence interval (CI) was used to describe the effect of the meteorological factors and pollutant factors on TB case occurrence in 
different subgroups. 99th percentiles and 1th percentiles were considered as the threshold of extreme effect. *P < 0.05

The temperature model is based on a maximum lag of 4 weeks, which was adjusted for long-term trend, wind speed, precipitation, and PM10.

The wind speed model is based on a maximum lag of 3 weeks, which was adjusted for long-term trend, mean temperature, precipitation, and PM10.

The precipitation model is based on a maximum lag of 4 weeks, which was adjusted for long-term trend, mean temperature, wind speed, and PM10.

The PM10 model is based on a maximum lag of 12 weeks, which was adjusted for long-term trend, mean temperature, wind speed, and precipitation
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