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Introduction
With a rapidly aging global population and epidemio-
logic changes in disease, cardiovascular disease (CVD) 
remains a significant cause of both morbidity and mor-
tality globally, especially for middle-aged and older adults 
[1, 2], which also causes a substantial economic burden 
on society [3, 4]. Studies have suggested that FPG is a 
valuable predictor of CVD in men and women. As a 
result, a growing number of population-based epidemi-
ological studies are starting to focus on the relationship 
between fasting glucose and mortality [5–7]. Previous 
studies have shown that people with high blood glucose 
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Abstract
The association between fasting plasma glucose (FPG), an important indicator of overall glycemic status, and 
the risk of cardiovascular mortality has been well investigated. The longitudinal study can repeatedly collect 
measured results for the variables to be studied and then consider the potential effects of intraindividual changes 
in measurement. This study aimed to identify long-term FPG trajectories and investigate the association between 
trajectory groups and cardiovascular and all-cause mortality. A latent class growth mixture modeling (LCGMM) was 
used to identify FPG trajectories. Cox proportional hazard models were used to estimate associations between 
FPG trajectories and the risk of all-cause and cardiovascular mortality. A U-shaped relationship between FPG and 
all-cause and cardiovascular mortality was observed in the restricted cubic spline regression models. Two FPG 
longitudinal trajectories of low-level (mean FPG = 5.12mmol/L) and high-level (mean FPG = 6.74mmol/L) were 
identified by LCGMM. After being adjusted for potential confounders, compared with the low-level category, the 
hazard ratios (HRs) for all-cause and cardiovascular mortality were 1.23(1.16–1.30) and 1.25(1.16–1.35), respectively, 
for the high-level group. Long-term FPG trajectories are significantly associated with and potentially impact the risk 
of all-cause and cardiovascular mortality.
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are at higher risk of CVD and that there is a J-shaped or 
U-shaped association between FPG and death [6, 8–11].

However, most are based on a cross-sectional design 
or assessed at two points baseline and outcome time [11, 
12]. The longitudinal study design provides the oppor-
tunity to collect measured results for the variables to be 
studied repeatedly and then take into account the poten-
tial effects of intraindividual changes in measurement 
[13–15]. Group-based trajectory modeling techniques, 
such as LCGMM, are a universal approach to illustrate 
the development of the variable over time and can be 
used to disentangle underlying population heterogeneity 
[16, 17].

Previous studies have reported that longitudinal trajec-
tories of FPG are associated significantly with incident 
myocardial infarction, and people with an elevated-level 
trajectory of FPG are at a higher risk of mortality [7, 18, 
19]. In 2018, Lee et al. identified five distinct trajecto-
ries of FPG variability and found that compared to the 
low FPG variability trajectory, the other four trajecto-
ries all had significantly higher mortality risks [19]. More 
recently, Soshiro et al. found that people with sharply 
increased FPG trajectories were at higher risk for CVD 
and suggested that studies focus on changes in FPG over 
multiple time points [7]. However, few relevant longitu-
dinal studies have been conducted, especially among the 
middle-aged and older Chinese population. Therefore, 
the primary aim of this study was to identify longitudi-
nal trajectories of FPG and then estimate the associations 
of FPG trajectories with all-cause and cardiovascular 
mortality.

Materials and methods
Participants
This retrospective cohort study was performed in a 
dynamic population based on an annual health check-
up project, and was carried out since 2010 in Xin zheng, 
Henan Province. All participants were asked to complete 
a questionnaire and to take anthropometric and labora-
tory measurements at baseline and follow-up. Details of 
this dynamic cohort have been described previously [20–
22]. The data were analyzed from residents’ electronic 
health records in the Xin zheng Hospital Information 
System from January 2010 to December 2019. To ensure 
the quality of the cohort and trajectories, the records 
with missing data for FPG were removed, and each 
study participant had one health examination record per 
year. Between January 2010 and December 2019, we fol-
lowed a total of 101,967 study participants. We excluded 
50,488 individuals who met with any one of the follow-
ing circumstances: the number of medical examinations 
was 1(n = 18,269), 2(n = 14,816) and 3(n = 12,934); miss-
ing information (n = 4,469) on body mass index (BMI), 
waist circumference (WC), smoking, drinking, physical 

activity, marital status or hypertension at baseline. The 
number of new participants in the cohort each year and 
the total number of follow-up visits each year are shown 
in Table S1. Finally, between January 2010 and Decem-
ber 2019, a total of 51,479 participants with four or more 
medical records were enrolled.

Data collection
Data were collected through a standardized question-
naire, as well as from physical and laboratory exami-
nations. Standardized questionnaires of the National 
Norms for Basic Public Health Services (third edition), 
which included their sociodemographic characteris-
tics (age, sex), medical history (coronary heart disease 
(CHD), stroke and hypertension), smoking, drinking, and 
physical activity, were administered by trained research 
staff. Based on self-reported marital status, smoking, and 
drinking, participants were classified as follows: living 
with a partner or without a partner; nonsmokers (includ-
ing previous smokers) or current smokers; and never, 
occasionally, or daily drinkers. The frequency of physical 
activity was described as never, occasionally, and daily 
[23].

Standing height and weight were measured to the near-
est 0.1 cm and 0.1 kg with the participant standing erect 
in bare feet, and the results were recorded by the mean 
of two measurements. BMI was calculated as weight (kg) 
divided by height squared (m). WC was measured to the 
nearest 0.1  cm at the midpoint between the lowest rib 
margin and the iliac crest following a standard protocol. 
After an overnight fast of 8  h or more, blood samples 
for the laboratory were obtained to assess levels of FPG 
using an automatic biochemical analyzer (DIRUI CS380, 
Changchun, China) [21].

Assessment of outcomes
The primary outcomes in the study were all-cause and 
CVD mortality, where CVD death was defined as death 
from CHD or stroke. For mortality surveillance, par-
ticipants’ mortality information was obtained from the 
Xinzheng Center for Disease Control and Prevention 
from the baseline survey to October 7, 2022. The causes 
of death were recorded using codes from the Interna-
tional Classification of Diseases (ICD-10), in which death 
from CVD was defined as I20eI25 and I60eI69.

Statistical analyses
For non-normal distribution, continuous variables are 
characterized by the median (interquartile range (IQR)), 
while categorical variables are expressed as frequency 
(%). The Kruskal-Wallis test was used to compare con-
tinuous variables and the chi-square test for categorical 
variables.
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The latent class growth mixture modeling (LCGMM) 
was used to explore heterogeneity in the dynamic course 
of FPG to distinguish subgroups of similar underly-
ing FPG trajectories as experienced over time. Models 
were fit using the package “lcmm” (version 2.0.0) in R to 
group participants with a similar trajectory of FPG devel-
opment from the first examination to the fourth [16]. 
Three possible polynomial specifications were allowed 
to describe the longitudinal FPG response as a function 
of time: a linear, quadratic, and a cubic specification, and 
every polynomial model (order 1 to 3) was respectively 
modeled as a 1 to 4 class solution. The choice of the best 
model was evaluated by the following composite criteria: 
(1) observing improvement in the Bayesian information 
criterion (BIC); (2) entropy > 0.7; (3) at least 10% of the 
participants in each trajectory class; (4) values of mean 
posterior class membership probabilities; and (5) con-
firming visually distinct trajectories [24, 25]. For ease of 
interpretation, we assigned labels to these trajectories 
based on their modeled graphic patterns, namely low-
level and high-level. Cox proportional hazards models 
were used to estimate HRs and 95% confidence intervals 
(CIs) between trajectory groups and all-cause and cardio-
vascular mortality after inspection of Schoenfeld residu-
als. Model 1 was adjusted for age and gender; Model 2 
was adjusted for age, gender, marital status, BMI, smok-
ing, alcohol consumption, physical activity and hyperten-
sion. Model 3 was adjusted for age, gender, marital status, 
BMI, smoking, alcohol consumption, physical activity, 
hypertension and FPG. To assess nonlinearity, we per-
formed a restricted cubic spline to the multivariable cox 
proportional hazards models and then the cut-off value 
was estimated by trying all possible values and choos-
ing the cut-off point with the highest likelihood. Based 
on bootstrap resampling, cross-validation was applied to 
assess and compare the discriminative power of model 
one and model three on the same data set. To investigate 
potential modification effects of sex on the associations 
between trajectory groups and all-cause and cardiovas-
cular mortality, we performed subgroup analyses based 
on sex. To verify the robustness of the results, we con-
ducted an additional sensitivity analysis after excluding 
those participants with less than four years of follow-up. 
P < 0.05 for a two-sided test was regarded as statistically 
significant. All analyses were performed using R version 
4.1.3 (R Foundation for Statistical Computing).

Results
The baseline characteristics of the study sample, strati-
fied by all-cause and cardiovascular mortality, are sum-
marized in Table  1. A total of 51,479 study participants 
(women: 27,792) were included in the present study. The 
median age (interquartile range) for women and men 
was 67.6 (61.9–72.0) and 67.4 (62.1–71.5), respectively. 

During the 322,218 person-years of follow-up (median 
follow-up time 6.26 years), 6,557 deaths were recorded, of 
which 3,379 were due to CVD, and 2,384 and 1,161 cases 
of CHD and stroke, respectively. Compared with partici-
pants who survived to the end of the study, the decedents 
were older, were more likely to be male, lived with a part-
ner, and had a lower BMI. Similar demographic charac-
teristics were observed in participants who died from 
CVD.

Based on the BIC, class membership posterior prob-
abilities, and classification to assess the goodness-of-fit 
of the competing LCGMM models (Table S2), the model 
with two FPG trajectories among the 51,479 participants 
was identified as the best-fit model: there were low-level 
(mean FPG = 5.12mmol/L, n = 39,291), and high-level 
(mean FPG = 6.74mmol/L, n = 12,188) trajectories (Fig. 1). 
High-level class had a lower proportion of participants 
(> 20%), which had highly discriminated with high 
mean posterior probabilities and posterior probabilities 
(> 90%). Compared with participants in the low-level 
class, counterparts in another group were more likely to 
be men with higher FPG, BMI, and waist circumference 
values (Table S3).

First, a U-shaped trend in the association between 
FPG at baseline and all-cause and cardiovascular mor-
tality was observed in the study, and the dose-response 
relationships modeled by restricted cubic spline mod-
els in the middle-aged and elderly population were pre-
sented in Figs. 2, A and B. The cut-off values of all-cause 
and cardiovascular mortality were 5.29 and 5.23, respec-
tively, and while FPG < 5.23mmol/L, the HR for cardio-
vascular mortality was 0.96(0.92–1.01) as per 1 SD FPG 
higher, P < 0.001. As FPG was more than 5.23mmol/L, 
the HR for cardiovascular mortality was 1.15(1.11–1.19) 
as per 1 SD FPG higher, P < 0.001. Similar results were 
observed for cardiovascular all-cause mortality, and 
while FPG < 5.29mmol/L, the HR for all-cause mortality 
was 0.97(0.94–0.99) as per 1 SD FPG higher, P < 0.001. 
As FPG was more than 5.29mmol/L, the HR for all-cause 
mortality was 1.15(1.12–1.18) as per 1 SD FPG higher, 
P < 0.001. Furthermore, the estimated risk for all-cause 
and cardiovascular mortality by longitudinal trajectories 
of FPG are presented in Table 2. After being adjusted for 
potential confounders, compared with the low-level cat-
egory, the HRs for all-cause and cardiovascular mortality 
were 1.23(1.16–1.30) and 1.25(1.16–1.35), respectively, 
for the high-level group. For the analysis of the risk of 
cardiovascular mortality, compared with the low-level 
category, the HRs for CHD and stroke mortality were 
1.19(1.08,1.30) and 1.33(1.18,1.51), respectively, for the 
high-level group. As seen in Figures S1 and S2, model 
three had excellent discriminative power over the follow-
up period after being adjusted for potential confounders.
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The results of the subgroup analyses according to sex 
is presented in Tables S4, S5, S6 and S7. First, the gender 
subgroup analysis revealed that the cumulative mortal-
ity rates were higher in the male participants compared 
to the female counterparts. Also, after being adjusted for 
potential confounders, compared with the low-level FPG 
trajectory category of the respective group, the HRs for 
all-cause and cardiovascular mortality were higher in the 
male group. Furthermore, the sensitivity analyses showed 
similar results to the primary analysis, which are pre-
sented in Table S8.

Discussion
The study had a median follow-up of 6.26 years (range 
5.16–7.91), and all participants were examined at least 
four times. An approximately U-shaped trend in the 
association between FPG and all-cause and cardiovascu-
lar mortality was observed. The all-cause and cardiovas-
cular mortality were lowest when the FPG was 5.29 and 
5.23mmol/L, respectively. During the follow-up period, 

according to the FPG trajectory of the study participants, 
we divided them into two groups: low-level and high-
level. As seen from the trajectory curves, the low-level 
group decreased first and then increased over the follow-
up time, while the high-level group showed a smooth 
increasing trend.

Many previous studies have revealed the association 
between high FPG and cardiovascular mortality risk, 
with one noting that high FPG was the third leading risk 
factor for all-cause mortality from 1990 to 2017 [11, 26]. 
Multiple mechanisms of action between abnormal glu-
cose metabolism and CVD/cardiometabolic risk have 
been suggested. First, abnormal glucose metabolism can 
disrupt normal endothelial function, accelerate athero-
sclerotic plaque formation, and contribute to plaque rup-
ture and subsequent thrombosis, thereby increasing the 
risk of macrovascular mortality [11, 27]. Second, abnor-
mal glucose metabolism may increase the risk of micro-
vascular complications, cancer, heart failure, myocardial 
infarction and stroke [11, 27–29]. Third, increased blood 

Table 1 Baseline characteristics of the study population stratified by outcome
Variables All-cause mortality P value Cardiovascular disease mortality P value

No(n = 42,412) Yes(n = 9,067) No (n = 46,667) Yes (n = 4,812)
Age (years) 64.6 (61.7,69.6) 73.0 (66.2,78.4) < 0.001 65.1 (61.8, 70.7) 73.0 (66.3, 78.4) < 0.001
Gender (%) < 0.001 < 0.001
Women 23,557 (55.5) 4,235 (46.7) 25,460 (54.6) 2332 (48.5)
Men 18,855 (44.5) 4,832 (53.3) 21,207 (45.4) 2480 (51.5)
Marital status (%) < 0.001 < 0.001
Living without partner 9163 (21.6) 3166 (34.9) 10,592 (22.7) 1737 (36.1)
Living with partner 33,249 (78.4) 5901 (65.1) 36,075 (77.3) 3075 (63.9)
Smoking (%) < 0.001 0.047
Never or previous 36,311 (85.6) 7583 (83.6) 39,838 (85.4) 4056 (84.3)
Current 6101 (14.4) 1484 (16.4) 6829 (14.6) 756 (15.7)
Drinking (%) < 0.001 < 0.001
Never 39,403 (92.9) 8371 (92.3) 43,354 (92.9) 4420 (91.9)
Occasionally 2048 (4.8) 381 (4.2) 2229 (4.8) 200 (4.2)
Daily 961 (2.2) 315 (3.5) 1084 (2.3) 192 (4.0)
Physical activity (%) < 0.001 < 0.001
Never 31,298 (73.8) 7044 (77.7) 34,701 (74.3) 3641 (75.7)
Occasionally 4237 (10.0) 901 (9.9) 4600 (9.9) 538 (11.2)
Daily 6877 (16.2) 1122 (12.4) 7366 (15.8) 633 (13.2)
Hypertension < 0.001 < 0.001
No 19,717 (46.5) 4432 (48.9) 22,008 (47.2) 2141 (44.5)
Yes 22,695 (53.5) 4635 (51.1) 24,659 (52.8) 2671 (55.5)
FPG trajectories < 0.001 < 0.001
Low-level 32,530 (76.7) 6761 (74.6) 35,755 (76.6) 3536 (73.5)
High-level 9882 (23.3) 2306 (25.4) 10,912 (23.4) 1276 (26.5)
FPG (mmol/L) 5.30 (4.8, 5.9) 5.3 (4.8, 6.0) 0.749 5.3 (4.8, 5.9) 5.3 (4.8, 6.0) 0.241
Mean FPG (mmol/L) 5.3 (4.9, 5.9) 5.3 (4.9, 5.9) 0.336 5.3 (4.9, 5.9) 5.3 (4.9, 6.0) 0.213
WC (cm) 83.0 (78.0,90.0) 80.00 (75.0,87.0) < 0.001 83.0 (77.5,90.0) 80.0 (75.0, 87.0) < 0.001
BMI (kg/m²) 24.2 (22.4,26.6) 23.4 (21.6,25.8) < 0.001 24.1 (22.3,26.5) 23.6 (21.8,26.0) < 0.001
Time of follow-up (years) 6.1 (5.9, 8.0) 5.9 (4.1, 7.0) < 0.001 6.1 (5.6, 8.0) 6.0 (4.4, 7.0) < 0.001
Abbreviations: FPG, fasting plasma glucose; BMI, body mass index; WC, waist circumference; Data are presented as median (interquartile range), or number 
(percentage).
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Fig. 2 Restricted cubic spline plots of the relationship between FPG at baseline of all-cause mortality (A) and cardiovascular mortality (B). The curve was 
computed using restricted cubic spline (RCS) function that took into account variables including sex, age, marital status, BMI, smoking status, alcohol 
drinking level, physical activity and hypertension. The green shaded area represents the 95% confidence interval for the HR. The dotted line shows the 
level at which the HR value is equal to 1

 

Fig. 1 Trajectories of FPG over the follow-up time. The green shaded area represents the 95% confidence interval for the FPG. The latent class growth 
mixture modeling (LCGMM) was used to explore heterogeneity in the dynamic course of FPG to distinguish subgroups of similar underlying FPG trajec-
tories as experienced over time. Abbreviation: FPG, fasting plasma glucose

 



Page 6 of 8Chen et al. BMC Public Health         (2024) 24:1335 

glucose may lead to infarct expansion by several mal-
adaptive metabolic pathways and an increased all-cause 
mortality [26, 27, 30, 31]. Although high FPG has been 
proven to be related to multiple noncommunicable dis-
eases, including type 2 diabetes, coronary heart disease, 
and stroke, the association between FPG and all-cause 
mortality remains controversial: a J- or U-shaped rela-
tionship was recently reported [6, 32]. This suggests that 
the method of classifying FPG into predefined categories 
for study based on established criteria or quartiles may 
be flawed [33, 34]. It has been reported that this classifi-
cation method may lead to the misclassification of those 
individuals close to the classification cutoff point [35, 
36]. Whereas in the LGCMM model in this study, it was 
assumed that there was no single developmental curve 
in the study population and that individuals belonged 
to different subgroups with different developmental tra-
jectories. The pattern of FPG changes during the fol-
low-up period was modeled, based on the population 
heterogeneity.

In recent years, many studies on the trajectory analysis 
of FPG and CVD have been reported. For instance, Yuan 
Zhongxiang et al. identified three different trajectories 
of FPG and found that distinct trajectories of long-term 
normal FPG are associated with the development of CVD 
[37]. This suggests that the long-term pattern of FPG may 
potentially influence cardiovascular risk and is consistent 
with the“ticking clock” hypothesis proposed by Steven M 
et al. [38]. More recently, Dankang Li et al. identified five 
different trajectories of FPG and found that individuals 
with elevated-level trajectory patterns had a higher life-
time risk of CVD [39]. A subgroup analysis based on gen-
ders conducted by Ogata et al. revealed that similar FPG 
trajectory patterns were found in both sexes. Moreover, 
higher FPG levels were associated with an increased risk 
of CVD over time, especially in men, and this is consis-
tent with our study [7]. Our study found that over 75% 
of the participants in the high-level group were in a state 
of impaired fasting glucose (IFG), which has also been 
described as a simply “prediabetes“ [9, 40]. By contrast, 
only about 20% of the study subjects in the low-level 

group were in a state of IFG. Many studies have suggested 
a higher risk of cardiovascular and all-cause mortality in 
the prediabetic population, which is also consistent with 
our findings [9, 27]. From the perspective of community-
based primary health care and primary prevention of 
CVD, the primary aim is to target two risk factors, obe-
sity and physical inactivity, after identifying high-risk 
groups [40, 41]. Studies in Asian populations have found 
that lifestyle interventions can significantly reduce car-
diovascular risk and facilitate self-management of health 
[42, 43].

Our study has important implications for the primary 
prevention of cardiovascular mortality in the middle-
aged and elderly and for public health. First, because of 
the U-shaped trend in the association between FPG and 
cardiovascular mortality, from an individual level, main-
taining the FPG at around 5.23 for a long period may have 
the lowest risk. Second, this research reveals long-term 
patterns of FPG that may potentially impact all-cause and 
cardiovascular mortality. Considering that CVD preven-
tion is long-term and dynamic, especially with increas-
ing age and accumulation of co-morbidities, our results 
emphasize that dynamic surveillance and multi-level pre-
vention should be implemented on a long-term or even 
lifetime basis. Furthermore, a longitudinal trajectory 
study with repeated measures and long-term follow-up 
should be a component of a distinct approach to iden-
tifying people at high risk for CVD. With the increased 
emphasis on primary health care and accelerating global 
aging trends, the FPG trajectory may be incorporated 
into primary health care as a new risk factor, and future 
research on its relationship with other health conditions 
should be strengthened.

Strengths of this study include the cohort design, the 
repeated measurements of FPG, the robustness of the 
observed associations, and the identification of groups 
of individuals with similar patterns of FPG trajectories 
based on long-term follow-up and repeated measure-
ments. On the other hand, several limitations of the study 
are worth mentioning. First, the study was conducted 
among middle-aged and elderly Chinese individuals with 

Table 2 Cox regression analysis between trajectories of FPG and all-cause mortality and cardiovascular mortality
Outcomes Variables No. of deaths No. of

person-years
Cumulative
mortality rateТ

HRs (95% CIs)
Model 1 Model 2 Model 3

All-cause mortality Low-level 6761 246955.4 27.4 1.00 (ref ) 1.00 (ref ) 1.00 (ref )
High-level 2306 75262.6 30.6 1.27(1.21,1.33) 1.29(1.23,1.36) 1.23(1.16,1.30)

CVD mortality Low-level 3536 246955.4 14.32 1.00 (ref ) 1.00 (ref ) 1.00 (ref )
High-level 1276 75262.6 16.95 1.34(1.25,1.43) 1.32(1.24,1.41) 1.25(1.16,1.35)

CHD mortality Low-level 2527 246955.4 10.23 1.00 (ref ) 1.00 (ref ) 1.00 (ref )
High-level 868 75262.6 11.53 1.28(1.19,1.39) 1.29(1.19,1.39) 1.19(1.08,1.30)

Stroke mortality Low-level 1207 246955.4 4.89 1.00 (ref ) 1.00 (ref ) 1.00 (ref )
High-level 471 75262.6 6.26 1.42(1.27,1.58) 1.34(1.21,1.50) 1.33(1.18,1.51)

ТPer 1000 person-years. Model 1: Adjusted for age and gender. Model 2: Adjusted for age, gender, marital status, BMI, smoking, alcohol consumption, physical 
activity and hypertension. Model 3: Adjusted for age, gender, marital status, BMI, smoking, alcohol consumption, physical activity, hypertension and FPG.
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an average age of approximately 65.4 years, making it dif-
ficult to generalize to all populations. Second, although 
we have adjusted for some confounders as far as possi-
ble, the possibility of bias still exists, such as the use of 
antidiabetic, antihypertension drugs and other medica-
tions, dietary factors, genetic factors, and unavoidable 
recall bias. In fact, in most developing countries, data 
on 2-hour PG and hemoglobin A1c are often difficult to 
obtain from large routine health checks because they are 
expensive and inconvenient. Therefore, the association 
between the longitudinal trajectories of these two indica-
tors and CVD and other disease conditions needs to be 
further studied.

Conclusions
Overall, as an important indicator of the overall glycemic 
state, a U-shaped association between FPG and all-cause 
and cardiovascular mortality was observed in the study. 
In addition, the long-term trajectory study found that 
higher FPG levels are associated with an increased risk 
of all-cause and cardiovascular mortality over time, while 
there may be some potential effects of long-term patterns 
of FPG. As an indicator preceding the onset of metabolic 
diseases, the prognostic capacity of FPG for CVD risk 
can be a complementary tool for public health primary 
prevention, but more studies are still needed.
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